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ABSTRACT

A series of shake table tests of a 1/9 scale shallow tunnel was performed to assess: i) overall peak
dynamic response of the soil-structure system associated with different backfill conditions and
thickness of overburden soil, and ii) seismic demands in terms of resultant lateral earth pressure
force. The test model response was interpreted in full-scale dimensions representative of the
idealized cross section of the Doyle Drive Battery Tunnel in San Francisco, CA. In the cases
studied, seismic demand in terms of racking and wall bending moment increased as thickness of
overburden soil increased. This trend was influenced as well by the relative stiffness between the
tunnel and the surrounding soil. Overall, the tunnel lateral deformation was an outcome of the
relative difference between the resultant force and its point of action on both sides of the tunnel.
Finally, the test results in both model and prototype scale were compared to those estimated using
a practice-oriented FHWA step-by-step procedure. In general, the FHWA procedure produced
reasonable estimates for relatively lower levels of soil shear strain (i.e., cases of Peak Ground
Acceleration (PGA) of up to about 0.6g). For higher levels of shaking, conservatism in the FHWA
estimate was noted, particularly for cases with shallow overburden soil. For such scenarios, a site

specific analysis with possible numerical simulation might be of value.
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1. Introduction

1.1. Background

Seismic response of an underground structure is governed by deformation and inertial
response of surrounding soil in view of (Wang 1993): (1) low stiffness of the surrounding soil due
to the relatively small overburden pressure, and (2) site amplification effects. Moreover, soil
backfill may consist of compacted materials with properties that are different from those of the in-
situ soil, resulting in some added complexities in the overall system response (Wang 1993). As
such, understanding the seismic loading demands imposed by ground shaking and deformation is
needed in design practice (Hashash et al. 2001). In addition, soil-structure interaction (SSI) effects
that modify the free-field ground deformation need to be considered in the design of underground
structures (Wang 1993).

Wang (1993) provided a simple and practical procedure to account for dynamic SSI effects.
This procedure was adopted in the Technical Manual for Design and Construction of Road Tunnels
— Civil Elements (FHWA 2009). In evaluating the SSI effects, a number of factors are considered
such as relative stiffness between the surrounding soil and the tunnel, structure geometry,
earthquake input motion, and variation of the tunnel embedment depth (Wang 1993). Among those,
the most important factor is the relative stiffness of soil in pure shear relative to the structure,
defined as the flexibility ratio (Frec) in the following expression (Wang 1993):

Frec = = (1.1)

where Gn is the average strain-compatible shear modulus of the surround grounding, W is the
width of the structure, H is the height of the structure, and Ks is the racking stiffness of the tunnel.
As such, the tunnel stiffness plays an important role in evaluating the SSI effects.

In the Phase 1 report titled “racking response of reinforced concrete cut-and-cover tunnel”
(Kim et al. 2015), the 1/3 scale reinforced concrete (RC) tunnel model segment was tested under
quasi-static cyclic lateral loading at the University of California, San Diego (UCSD). This RC
tunnel model was based on an idealized cross-section of the Doyle Drive Battery tunnel (Caltrans
2012). The test was performed to evaluate the tunnel lateral stiffness and large deformation

response characteristics. In addition to the RC tunnel test, an additional model at 1/9 scale was



tested incorporating ground representative of realistic backfill conditions using a laminar soil
container in a transverse shear loading pattern (Kim et al. 2015). Thereafter, as a continuation of
this study, using a similar soil-structure model configuration, a series of shake table tests were
performed at UCSD to further evaluate the involved SSI effects.

In this report, details of the performed shake table testing phase are presented. The recorded
response of the test models is discussed mainly in model scale. Afterwards, the associated response
in the full-scale model configuration is presented. Finally, a FHWA step-by-step procedure is used
to estimate the racking and bending moment of the tested tunnel in both model and prototype scales.
The FHWA estimates were compared to the test results and further discussion of the FWHA

procedure outcomes are presented.
1.2. Research Scope

The objectives of this research are:

1. To evaluate seismic response of a shallow tunnel under different backfill conditions and
thickness of overburden soil (associated with burial depth) in the 1/9 model scale configuration
and on this basis, at the actual full-scale dimensions.

2. To provide recommendations regarding current seismic design criteria for shallow tunnels. For
this purpose, a comparison study is conducted between the shake table test results, and tunnel

deformation estimated using a simplified step-by-step procedure presented in FHWA (2009).
1.3. Report Outline

This report is composed of six chapters. A summary of each chapter is provided below:

e Chapter 2 describes details of the shake table test program. Three test model configurations
including the tunnel structure, soil properties, and earthquake input motions are discussed.

e Chapter 3 presents the shake table test results in model scale. Peak dynamic response of the
tunnel structure and the backfill is summarized.

e Chapter 4 discusses the observed lateral earth pressure (including the static response) along the
tunnel walls at peak racking in model scale. The earth pressure is expressed as a resultant
lateral earth pressure force and associated point of action.

e Chapter 5 presents the shake table test results in prototype scale. In the end, the total bending

moment including the static value is discussed.



Chapter 6 shows comparison of the shake table results with the estimates using the FHWA
step-by-step procedure in both model and prototype scale.

Chapter 7 provides a summary of this study as well as major observations and conclusions.
Recommendations for the FHWA step-by-step procedure are provided as well.

Appendix A presents photographs taken during the shake table test model construction.
Appendix B displays the instrumentation layout for the shake table test models.

Appendix C shows the recorded response time histories of the shake table tests in model scale.
Appendix D provides further details about the scaling laws associated with the shake table test
models.

Appendix E presents main recorded response time histories in prototype scale.

Appendix F presents finite element analyses of the 1% test model configuration in both model
and prototype scales. The prototype scale numerical model was further used to study the
influence of possible pinned connection at the interface between wall and roof on both sides
of the tunnel.

Appendix G includes a summary of the 1/3 RC tunnel test presented in the Phase | report.



2. Shake Table Test Program

2.1. Test Configuration

A tunnel-soil model was tested using the large-scale outdoor shake table at UCSD (Figure
2-1). Arelatively large laminar soil container (15 ft high, 22 ft long, and 9.6 ft wide) was employed
in order to reduce the boundary effect during earthquake excitation. Figure 2—2 shows photographs
of the tunnel model employed in the shake table tests.

Three test model configurations were employed with different backfill conditions for the
surrounding soil and thickness of overburden soil. Two levels of compaction were considered in
terms of the relative density (Dr; about 99% and 85%). The tunnel was placed on 9.3 ft deep
compacted ground at about 99% D, (Figure 2-3). The three test model configurations are as
follows:

1) Model 1 (1st test model configuration) backfilled at Dr of 99% overlain by 2ft overburden soil

(Figure 2-3)

2) Model 2 (2nd test model configuration) backfilled at Dr of 85% without overburden (Figure
2-4)

3) Model 3 (3rd test model configuration) backfilled at Dy of 85% overlain by 1ft overburden soil
(Figure 2-5)

During the replacement of backfill next to the tunnel, the soil below the structure base remained

unchanged. Appendix A provides photographs taken during model construction.

2.2. Tunnel Model

Figure 2-6 shows the tested tunnel model (3.3 ft high and 6 ft wide). Length of the tunnel
(9.25 ft) perpendicular to its cross-section was essentially equal to that of the container width (i.e.,
resulting in a plane strain-type model configuration). This model was designed to represent a
possible 1/9 scale model in terms of the geometric dimensions and lateral stiffness. In prototype
scale, the equivalent dimensions for height, width, and length are 30 ft, 53 ft, and 83 ft, respectively.
The corresponding scaling laws are presented in Appendix D.

The prototype structure was adopted based on an idealized 1/3™ scale cross-section of the
Doyle Drive Tunnel presented in the previous Phase | study titled “Racking response of reinforced
concrete cut-and-cover tunnel” by Kim et al. (2015). This 1/9 scale tunnel model was also based

on the 1/3' scale reinforced concrete (RC) tunnel segment (Kim et al. 2015; see Appendix G for



a summary of this RC tunnel model.). This RC tunnel was fabricated and tested with fixed
connections near the tunnel roof on both sides of the tunnel as shown in the as-built drawings. As
such, this pinned connection was not taken into consideration in the steel tunnel model for the
shake table tests. Upon completion of the shake table test, the pinned connection was studied in a
finite element model to further evaluate its effect on the tunnel deformation. This preliminary
numerical study and its outcomes is presented in Appendix F.

Due to model detail challenges in construction of an RC specimen at 1/9 scale, the tunnel
was built out of steel (Figure 2—6). An added advantage of using steel is that this model remains
in the linear range during the testing phase without any permanent deformation during the tests.
The wall was 27.25 inches in height, measured from the top face of the 6 in high hollow structural
steel (HSS) base (Figure 2—6a). To obtain high flexural (El) and axial (EA) rigidities against lateral
loads in the roof and slab sections, 12 HSS columns were deployed in the roof and slab at a center-
to-center spacing of 1 ft (Figure 2—-6a). As such, the laterally induced deformation was completely
dictated by the walls. To produce the actual curved roof geometry of the prototype, a wooden

frame was mounted above the top of the tunnel model.

2.2.1. Lateral stiffness testing

Figure 2—7 shows the test setup to measure lateral stiffness of the 1/9 scale tunnel model
(without the wooden frame affixed to the roof) under a fixed base condition. Figure 2-8 shows the
measured displacement upon application of a point loads at top of the wall. Elastic response was
observed up to the lateral displacement of 0.21 in (at the loading of 25.7 kip) corresponding to a
0.8% drift ratio with an effective height of 27.25 in. The measured lateral stiffness was 123 kip/in.
Table 2-1 summarizes the test results in both model and prototype scales. In prototype scale, lateral
displacement was 5.67 in (scale factor of 27, A° where A = 9) and drift ratio was 2.4% based on
the scale factor of 3 (= A>°, where .= 9). The corresponding lateral stiffness was 3,321 kip/in (39.9
Kip/in per unit length of 1 ft) by using a scale factor of 27 (= A}® where A = 9).

Based on a simple frame analytical approach (e.g., one bay/story frame with rigid beam

along the roof), associated lateral stiffness of the tunnel is expressed as:

12E1 24E1
k:Zcolums PE = W3 (2.1)




where h is height of the wall (h =27.25 in and k = 123 k/in in this study). Using the Eq. (2.1), El
of the wall (both sides) were computed as 98.2 x 10° kip-in?in model scale. It is noted that the EI
measured from the test was very similar to that resulting from the moment of inertia (I) using the
wall thickness of 0.75 inch and elastic modulus (E) of 29,000 ksi for steel.

2.3. Soil Material Properties
2.3.1. Soil gradation

Sieve analysis was performed to characterize the particle size distribution of the employed

backfill materials. Figure 2—-9 shows the resulting particle gradation curve with a coefficient of

uniformity (C,) of 6.2 and a coefficient of curvature (C,) of 0.8. The soil was classified as poorly

graded sand (SP) according to the Unified Soil Classification System (USCS).

2.3.2. Triaxial test

A series of consolidated-drained (CD) triaxial tests were performed on a dry sample of the
sand (used for the backfill) to measure the shear strength and volume change. The triaxial tests
were performed at confining stresses of 1 psi, 3 psi, 5 psi, 7 psi, and 12 psi, which encompassed
the stress range to be expected in the shake table tests.

The specimens were compacted within the latex membrane held by a split-wall compaction
mold at nearly 100% D, and dry unit weight of 122 pcf. After compaction, vacuum was applied to
the soil specimen, and the split-wall mold was removed. The sand specimens had a diameter of 3
in (71.1 mm) and height of 5.6 in (142.2 mm). Similar to the free-field condition used in the shake
table tests, the soil specimens had 7% water content. The confining pressure was applied prior to
shearing. The shear force was applied using a constant strain rate of 1%, and the volume change
reading was taken during shearing.

Figure 2-10 shows the stress-strain and volume change response under different confining
stresses. The peak shear strength for each test was used to define the Mohr-Coulomb failure
envelope. Figure 2—-11 shows the Mohr circles and the best-fit failure envelope for the specimens
with a zero cohesion and a friction angle (¢) of 53.2° (Figure 2-11a). In addition, the modified
Mobhr Circle diagram (also known as the MIT p-q diagram) was established using the mean stress
(p) and the deviator stress (q) to determine any cohesion (c) in the soil sample (Figure 2-11b). For

this modified diagram, the resulting ¢ and ¢ were calculated to be 51.9° and 2.0 psi, respectively.



It is noted that any post-construction evaporation of water from the soil model might change the

properties measured during the triaxial test (Wilson 2009).

2.3.3. Sand cone test

Sand cone tests were performed to measure the Dy of the backfill at five elevations during
construction. Table 2—2 summarizes the sand cone test results.

2.4. Earthquake Input Motions
2.4.1. Northridge earthquake (USC, Fire station 108 record)

A shake table motion taken from the 1994 Northridge earthquake was employed (recorded
at Fire Station 108, 12520 Mulholland Dr., USC station 5314, Component 35,
http://strongmotioncenter.org/vdc/scripts/plot.plx?stn=424&evt=21). Figure 2-12 shows the

measured shake table response from Model 1.
2.4.2. Kobe earthquake (Takatori record)

With a large velocity pulse (representative of a near source motion), the Takatori record
(from the 1995 Kobe earthquake) was used as an input (Takatori station in Japan, Component 0,

http://strongmotioncenter.org/vdc/scripts/event.plx?evt=1098#4053). Figure 2-12 shows the

measured shake table response from Model 1.
2.4.3. Scaled earthquake motions

According to the model scale (1/9) and the resulting model dynamic frequency, the time
duration of the above Northridge and Takatori earthquake motions were scaled by a factor of
1.0/5.2. To further investigate the seismic response under different ground motions, additional
scale factors were taken into consideration in terms of time duration (using a factor of 1.0/2.5) and
acceleration amplitude (a factor of 2 for the Northridge earthquake record) as summarized in Table
2-3. This table also includes the measured peak acceleration, velocity, and displacement of the
shake table from Model 1.

Table 2-4 summarizes the sequence of shaking events. The recoded acceleration time
histories are shown in Figure 2—13 through Figure 2-15 from Models 1-3, respectively. Figure 2—

16 shows the pseudo-acceleration response spectra for the records of Model 1.


http://strongmotioncenter.org/vdc/scripts/plot.plx?stn=424&evt=21
http://strongmotioncenter.org/vdc/scripts/event.plx?evt=1098#4053

2.5. Instrumentation Plan

Table 2-5 summarizes the employed types and numbers of instruments used in the tests.

Detailed instrumentation drawings can be found in Appendix B.
2.6. Archived Test Data

The test data was provided via the following cloud address:
https://drive.google.com/open?id=0B6LnvH3LOK71bW1KQ2dgcEUtb3M

Figure 2-17 shows the names of the test data files listed according to the loading sequence (Table

2-4). In the directory of each shaking event, a total of six data files were stored. Test data of each
file were collected from the channels listed in Table 2-6. For example, Figure 2-18 shows the
“Data2_acceleration.dat” file measured from a shaking event using the Nor100PT0O motion for the
1% test model. As shown in this file, the records were saved with 8-decimal scientific format and

delimited by tab characters (Microsoft Excel can be used to open this file).


https://drive.google.com/open?id=0B6LnvH3L0K7IbW1KQ2dqcEUtb3M

Table 2-1: Lateral stiffness test results of the steel tunnel specimen in model and prototype scales

Quantity 1/9 Scale Scaling factors Prototype scale
Target lateral a3
displacement (in) 0.21 27 (=9 5.67
Lateral stiffness 123 9 (= 9Y) 3,321

(kip/in)

(40 kip/in per unit length of 1ft)

Table 2-2: Summary of sand cone test measurement for Model 1 (2ft overburden soil)

Test Depth F!eld Dry I\/Iaximu_m Relativ_e
NoO (inch) moisture  density  dry density compaction Remarks
' (%) (pcf) (pcf) (%)
1 36 7.2 120.6 122 99
2 36 7.6 120.3 122 98
3 72 6.5 122.3 122 100
4 72 6.4 120.8 122 99
5 111 8.3 123.1 122 100 At tunnel base
6 111 7.1 121.2 122 99 At tunnel base
7 149 7.3 119.4 122 98
8 149 7.9 119.6 122 98
9 178 6.7 120.3 122 99
10 178 6.3 121.1 122 99




Table 2—-3: Ground motions used in the shake table tests

No. Input Earthquake Amplitude Timescale PGA? P_GVT PC.5DJr
motion scale factor factor (9) (in/s) (in)
1 Norl00PTO 1 1 0.51 11.3 2.6
2 Norl00PT1 Northridge 1 1.0/2.5 0.40 4.2 0.3
3 Norl00PT2 1 1.0/5.2 0.38 1.8 0.7
4 Nor200PT1 2 1.0/2.5 0.93 8.8 0.7
5 Tak100PTO 1 1 0.68 53.0 13.8
6  TaklOOPT1 Takatori 1 1.0/2.5 0.72 20.6 24
7  Tak1l00PT2 1 1.0/5.2 0.55 8.4 11
*Measured from Model 1 (2ft overburden soil)
Table 2-4: Sequence of the shaking events
No. Model 1 _ Models 2 -3 _
(2ft overburden soil) (0 to 1 ft overburden soil)

1 Norl00PT1 Norl00PT2

2 Nor200PT1 Norl00PT1

3 Nor100PTO Nor100PTO

4 Tak100PT1 Tak100PT2

5 Tak100PTO Nor200PT1

6 Nor100PT2 Tak100PT1

7 Tak100PT2 Tak100PTO

10



Table 2-5: Type and number of sensors

Sensor Type  Location Description No. of Sensors
Accelerometer Shake table 3 DOF accelerations at top 3
center of shake table platen
Soil box Soil box acceleration along the 24
height
Soil, free-field Soil (free-field) acceleration 31
response
Tunnel tunnel acceleration response at 16
the top and bottom of the walls
String Soil box Soil box lateral displacement 15
Potentiometer along the height
Tunnel and soil box  Lateral translations of the tunnel 8
relative to the soil box
Linear Tunnel Racking 8
Potentiometer  Soil surface Vertical soil displacement 7
Inclinometer  Tunnel Rotation of the tunnel base 2
Strain gauge  Tunnel Bending strain along the wall 56
height
Pressure Tunnel Lateral earth pressure along the 35
sensor wall height
Total no. of sensors 205

Table 2—6: Channel information about data directory

Data Response Channel label No. of channels
Data 1 Shake table Acc./ Vel./ Disp. 3
Data 2 Acceleration A01-A71 71
Data 3 Displacement (SP) SP01-SP23 23
Data 4 Displacement (LP) LPO1-LPO7/LP11-LP18 15
Data 5 Bending strain S01-S56 56
Data 6 Pressure TS01-TS31 31

11



Figure 2—2: Pictures of the tunnel specimen
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Figure 2—6: 1/9"" scale tunnel specimen used for the shake table tests
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Displacement transducers

Figure 2—7: Photographs of test setup to measure lateral stiffness of the 1/9 scale steel tunnel
specimen
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Figure 2-18: Format of test data file (TEST1_1 Norl100PT1\Data2_Acceleration.dat)

Time
seconds
4.16666667E-03
8.33333334E-03
1.25000000E-02
1.66666667E-02
2.08333334E-02
2.50000000E-02
2.91666667E-02
3.33333334E-02
3.75000000E-02
4.16666667E-02
4.58333334E-02
5.00000000E-02
5.41666667E-02
5.83333334E-02
6.25000001E-02
6.66666667E-02
7.08333334E-02
7.50000001E-02
7.91666667E-02
8.33333334E-02
8.75000001E-02
9.16666667E-02
9.58333334E-02

A0l
g
4.27500345E-04
8.24500807E-04
-3.67498957E-04
2.95005739E-05
2.95005739E-05
8.24500807E-04
1.61850080E-03
2.95005739E-05
4.27500345E-04
-7.64499418E-04
1.61850080E-03
8.24500807E-04
2.95005739E-05
2.95005739E-05
4.27500345E-04
2.95005739E-05
4.27500345E-04
4.27500345E-04
4.27500345E-04
1.22150034E-03
-3.67498957E-04
-1.16249919E-03
-3.67498957E-04

A02 A03
g g
-7.31742010E-04 -1.81198120E-05
8.02257913E-04 -1.81198120E-05
-3.48742062E-04 -1.81198120E-05
4.18257958E-04 -1.81198120E-05
4.18257958E-04 -1.81198120E-05
-2.26574205E-03 -1.81198120E-05
1.18625793E-03 -1.81198120E-05
-1.88274216E-03 -1.81198120E-05
-1.49874203E-03 -1.81198120E-05
1.56925793E-03 -1.81198120E-05
4.18257958E-04 -1.81198120E-05
4.18257958E-04 -1.81198120E-05
-3.48742062E-04 -1.81198120E-05
-1.11574202E-03 -1.81198120E-05
-2.26574205E-03 -1.81198120E-05
8.02257913E-04 -1.81198120E-05
3.52579518E-05 -1.81198120E-05
4.18257958E-04 -1.81198120E-05
4.18257958E-04 -1.81198120E-05
3.87125788E-03 -1.81198120E-035
-7.31742010E-04 -1.81198120E-05
3.52579518E-05 -1.81198120E-035
3.48725799E-03 -1.81198120E-035

A04
g
4.73116641E-04
8.56116647E-04
1.23911665E-03
-6.76883385E-04
8.91166419E-05
-2.93883379E-04
-1.05988339E-03
-2.93883379E-04
-2.93883379E-04
-2.93883379E-04
-2.93883379E-04
1.23911665E-03
8.91166419E-05
-2.93883379E-04
-2.93883379E-04
4.73116641E-04
-2.93883379E-04
-2.93883379E-04
8.91166419E-05
-6.76883385E-04
8.91166419E-05
8.56116647E-04

4.73116641E-04
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3. Shake Table Test Result in Model Scale: Part 1-Peak Model Response

3.1. Introduction

The shake table tests were performed using a total of seven earthquake input motions for
three test model configurations (Models 1-3). This chapter first presents time histories of the
recorded dynamic response (excluding the static part) from the three models in terms of ground
acceleration, racking (lateral tunnel deformation), and wall bending moment. Afterwards, the
recorded response for Nor100PT2 and Tak100PT2 (related to the scaling law for 1/9 model scale)
from Models 1-3 and the related observations are presented. From all the shaking events, the
corresponding peak response is summarized. In the end, correlation between the ground and tunnel

response is addressed. All quantities presented in this chapter are in model scale.
3.2. Recorded Response Sign Conventions

As presented in the figures of this report, the following conventions are adopted:

1) Acceleration/Velocity/Displacement: a positive value indicates the test model moves toward
the East

2) Lateral earth pressure is positive in compression.

3) Bending moment: a positive value is associated with wall motion towards East (both sides of
the tunnel). For the bending moment, the recorded strain gauge data from outside and inside
the wall (see Figure B-8 in Appendix B) were used to compute associated bending strain and
curvature (x; the bending strain divided by half of the wall thickness). Afterwards, El of the

wall (see Section 2.2.1) was employed to express the bending moment (= Elx).
3.3. Dynamic Response Time Histories

Response time histories of Models 1-3 from all the shaking events (in the order of the test
sequence) are shown in Figure 3—1 through Figure 3-3, respectively, in terms of:
1) Ground surface acceleration
2) Tunnel racking (dynamic component)
3) Wall bending moment (dynamic component) at the base
As shown in these figures, racking was generally associated with the amplitude of ground

acceleration. The wall bending moment also corresponded to the level of racking.
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Model 1 recorded response time histories for Norl00PT2 and Tak100PT2 (among the

seven earthquake events) are shown in Figure 3—4 and Figure 3-5, respectively, in the following

order (from top to bottom):

1)
2)

3)

4)

5)

6)

Ground surface acceleration along with the shake table acceleration for comparison.

Ground surface velocity obtained by integrating the acceleration (Item 1 above), along with
the shake table velocity for comparison.

Ground distortion (lateral deformation) between the tunnel top and base (i.e., as shear
deformation) computed from double integration of the ground acceleration at corresponding
levels.

Tunnel racking (lateral deformation) measured from the displacement sensor (linear
potentiometer) that was placed inside the tunnel.

Lateral tunnel base translation measured from the displacement sensor (string potentiometer)
connected between the laminar soil container and the structure base.

Bending moment at top and base of the tunnel walls (per unit wall length of 1 ft

Recorded response from Models 2-3 are presented in Figure 3—6 through Figure 3-9. Table 3-1

also summarizes the above peak response values as well as acceleration of the tunnel at the top

and bottom from all shaking events. Appendix C presents the recorded response from all shaking

events.

3.3.1. Test results from Model 1 Nor100PT2

During Nor100PT2 input excitation (Figure 3—4), the following observations were drawn:
Peak ground acceleration (PGA) was about 0.42g.
Peak racking was about 0.022 inch (0.05% drift if divided by the tunnel height of 40 inches)
as the test model moved towards East (at 3.5 sec.)
Peak racking coincided with other peak response such as PGA, ground distortion, and wall
bending moment.
Ground distortion (shear deformation herein) was about 0.061 inch (about 0.15% shear strain,
divided by the tunnel height). Compared to the peak racking, this distortion was as much as
about three times, indicating that the ground surrounding the tunnel was relatively softer than
the tunnel. Ratio of the racking to the ground distortion, also known as the racking coefficient
(or racking ratio; Wang 1993; FHWA 2009) was about 0.36.
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e Similar peak bending moment (about 200 Ib-ft/ft; dynamic component) occurred near the top

and bottom of both tunnel walls.
3.3.2. Test results from Model 1 Tak100PT2

During Nor100PT2 input excitation (Figure 3-5), the following observations were drawn:

e Peak ground acceleration (PGA) was about 0.75g.

e Peak racking was about 0.15 inch (0.37% drift divided by the tunnel height of 40 inches) as
the test model moved towards East (at 3.4 sec.)

e Peak racking generally coincided with other peak response such as PGA, ground distortion,
and wall bending moment.

e Ground distortion was about 0.3 inch (about 0.75% shear strain). Compared to the peak racking,
this distortion was nearly as much as twice, indicating that the ground surrounding the tunnel
was relatively softer than the tunnel (corresponding racking ratio of about 0.5).

e Peak bending moment of about 620 Ib-ft/ft (positive moment) occurred near the base of the
West wall. On the East wall, larger bending moment of 660 Ib-ft/ft (negative moment) was

observed near the base.
3.3.3. Test results from Models 2-3 during Nor100P2 and Tak100PT2

Similarly, Model 2 response time histories during Norl00PT2 and Tak100PT2 input
excitation are shown in Figure 3-6 and Figure 3—7, respectively. For Model 3, the response time
histories are shown in Figure 3-8 and Figure 3-9. Table 3-1 summarizes main peak response
values from the Models 2-3 from all the shaking events (corresponding response time histories are

presented in Appendix C)
3.4. Summary of Peak Dynamic Response from Models 1-3

From each test model, peak racking generally coincided with the PGA (based on the time
history plots shown in Figure 3—4 through Figure 3-9). The level of the peak racking was also
proportional to the PGA and PGV in general but somewhat scattered beyond PGA of about 0.8g
(Figure 3-10). The maximum racking (dynamic component) throughout the entire study was about
0.2 inch (0.48% drift ratio), which occurred in Model 1 for motion Tak100PT1 (Table 3-1). In this
case (Model 1 Tak100PT1), the West wall suffered the highest bending at the base (about 850 Ib-ft
per unit wall length of 1ft).
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Under the identical input excitation for different test models, PGA and PGV tended to
slightly decrease as the overburden soil pressure increased (e.g., during Norl00PT2, 0.64g in
Model 2, 0.52g in Model 3, 0.42g in Model 1). Despite this trend, the level of peak racking tended
to increase along with higher overburden soil pressure (Figure 3-10).

For the tunnel located at shallow depth (experiencing the highest PGA), the ground
deformation between the tunnel top and base was highest (resulting in more strain softening as
shown in Figure 3-12). Consequently, the tunnel became relatively stiffer than the surrounding
soil (i.e., corresponding flexibility ratio decreased), leading to less deformation than the ground
(i.e., Rr, < 1.0). Figure 3-13 shows the Ry associated with the PGA and the soil distortion between
top and bottom of the tunnel. This figure shows a clear tendency for the racking ratio decreasing
with increasing PGA as well as the soil distortion (shear strain). Particularly, from Model 2, the R,
was likely to be constant (Rr = 0.05) regardless of the level of the soil deformation, implying that

the tested tunnel model was considerably stiffer than the surrounding soil.
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Table 3-1: Peak dynamic response of ground and tunnel in model scale

= g At surface At level of tunnel top At level of tunnel base Soil . Bending moment (Kip-ft) Base
B EQ! distortion Racking West wall East wall translation
s 4 PGA RGV Acc. \_/el. Tunnel | Acc. \/el. Tunnel (%) (%) Top Base Top Base (%)
(9 (infs) (@ | (infs) (%) (@ | (infs) (%)
1| Norl00PT1 | 0.60 8.1 0.52 7.2 0.45 0.33 39 0.33 0.29 0.17 0.27 0.33 -0.32 | -0.26 0.01
2| Nor200PT1 | 1.06 18.7 0.82 16.3 0.71 0.79 10.2 0.68 1.04 0.33 0.62 0.54 -0.52 | -0.60 0.10
3| Norl00OPTO | 0.90 22.1 0.80 21.3 0.72 0.55 15.3 0.58 1.33 0.40 0.59 0.69 -0.66 | -0.62 0.13
1| 4| Tak100PT1 | 0.88 35.7 0.86 34.9 0.78 0.74 28.0 0.76 1.56 0.48 0.73 0.85 -0.79 | -0.79 0.12
5| Tak100PTO | 0.79 354 0.77 35.6 0.74 0.70 31.9 0.71 1.18 0.38 0.68 0.73 -0.66 | -0.78 0.07
6 | NorlOOPT2 | 0.42 3.7 0.38 3.8 0.29 0.26 2.6 0.24 0.15 0.05 0.17 0.20 -0.19 | -0.17 0.00
7| Tak100PT2 | 0.75 13.8 0.73 13.6 0.60 0.49 7.0 0.49 0.76 0.37 0.61 0.62 -0.58 | -0.66 0.07
1| Norl0OPT2 | 0.64 4.9 0.64 4.9 0.39 0.36 2.3 0.32 0.24 0.01 0.06 0.10 -0.08 | -0.08 0.01
2| Norl00OPT1 | 0.96 8.2 0.96 8.2 0.49 0.44 4.9 0.41 0.61 0.03 0.11 0.15 -0.12 | -0.13 0.06
3| Norl00PTO | 1.19 23.4 1.19 23.4 0.85 0.76 15.1 0.85 2.84 0.11 0.20 0.27 -0.21 | -0.24 0.26
2| 4| Tak100PT2 | 0.90 17.7 0.90 17.7 0.74 0.65 9.5 0.77 1.65 0.10 0.18 0.26 -0.19 | -0.23 0.20
5| Nor200PT1 | 1.27 22.1 1.27 22.1 0.83 0.81 13.3 0.77 2.19 0.09 0.17 0.20 -0.15 | -0.22 0.20
6 | Tak100PT1 | 0.82 404 0.82 404 0.76 0.75 26.0 0.77 2.69 0.08 0.20 0.23 -0.17 | -0.24 0.19
7| Tak100PTO | 0.92 35.8 0.92 35.8 0.81 0.64 315 0.78 1.96 0.08 0.15 0.25 -0.15 | -0.24 0.18
1| Norl00PT2 | 0.52 4.7 0.39 3.8 0.37 0.33 21 0.28 0.21 0.05 0.15 0.18 | -0.16 | -0.16 0.01
2| Norl00PT1 | 0.78 8.1 0.50 6.3 0.48 0.39 4.1 0.34 0.44 0.10 0.25 024 | -023| -0.26 0.04
3| Norl00PTO 1.04 24.2 0.87 21.3 0.87 0.70 14.6 0.81 1.78 0.23 0.40 0.43 -0.37 -0.44 0.16
3| 4| Tak100PT2 | 0.80 14.6 0.76 135 0.74 0.58 8.6 0.65 1.14 0.23 0.39 043 | -0.38 | -0.43 0.15
5| Nor200PT1 | 1.11 21.6 0.83 17.2 0.79 0.77 11.9 0.75 1.77 0.19 0.33 036 | -031| -0.37 0.14
6| Tak100PT1 | 0.95 374 0.91 37.0 0.82 0.74 26.1 0.79 3.00 0.26 0.43 0.46 | -0.42 | -0.50 0.24
7| Tak100PTO | 0.80 37.6 0.81 36.2 0.77 0.63 31.6 0.74 2.17 0.22 0.39 041 | -0.38 | -0.47 0.20

'For Model 1, earthquake input motions were not in the same order applied for Models 2-3
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Figure 3—-1: Model 1 response time histories of the surface ground acceleration (top), tunnel racking (middle), and bending moment at
the wall base for all the shaking events (in the order of the test sequence) in model scale
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Figure 3-8: Model 3 response time histories for Nor100PT2 in model scale (1 ft overburden soil)
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Figure 3-9: Model 3 response time histories for Tak100PT2 in model scale (1 ft overburden soil)

39



Racking (%)
© ©o o o o
[N w N o [}

©
—

Notes: ' Nor100PT2, 2Nor100PT1, 3Nor100PTO, 4Tak100PT2, ®*Nor200PT1, 8Tak100PT1, ” Tak100PTO

Model 2 (without overburden, D_= 85%)

4 3 5
%7 ©o
2
o] o
0 02 04 06 038 1 1.2 14
PGA (g9)

1 ot
I tn

Racking (%)
o
w

Model 2 (v;lithout ovérburden, D'r = 85%)

0.2
4 3
0.1 °" o o7 of
2
oL_of®
0 1 2 3
PGV (ft/s)

0.6

057

Racking (%)
°© o o
N w N

o
—

Model 3 (1 ft overburden, D, = 85%)

% 3
407 o) 5
(0]
02
ol
0 02 04 06 08 1 1.2
PGA (g9)

N o
EN t

Racking (%)
o
w

1.4

Model 3 (‘i ft overburaen, Dr = 85%)

6
04 O3 87
021 o5
0.1 o?
ol
0
0 1 2 3
PGV (ft/s)

%5 [Model 1 (2 ft overburden, D, = 99%)
05t
of
~047 703
g & °
5
2o3 e
4
[$)
&
02}
o2
0.1
o'
0
0 02 04 06 08 1 12 14
PGA (9)
06 , , ,
Model 1 (2 ft overburden, D, = 99%)
05
o6
—~04F 3 7
o\o 04 o Q
= 5
()]
£ 03 *
x
[$]
&
02}
o2
0.1
o
0
0 1 2 3 4
PGV (ft/s)
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4. Shake Table Test Result in Model Scale: Part 2-Lateral Earth Pressure
4.1. Introduction

This chapter presents the lateral earth pressure measured from the Tactilus pressure sensors
along the tunnel walls (Figure 4-1). The data from Model 1 during Nor100PT2 and Tak100PT2
and Model 2 (the entire shakings) were excluded because the Tactilus sensor malfunctioned during
the test. At peak racking, the pressure time histories and profiles along the wall are presented.
Afterward, the earth pressure was expressed in terms of force (i.e. pressure multiplied by the
corresponding sensing area). The lateral earth force was summed up to obtain the resultant lateral
earth pressure force for each wall. Finally, this resultant force is correlated with racking and

bending moment.
4.2. Lateral Earth Pressure along the Wall
4.2.1. Model 1 (2 ft overburden soil)

Model 1 (backfill compacted at Dr of 99%) earth pressure time histories along the wall
height (7 locations; see Figure 4-1) are shown in Figure 4-2 for Norl00PT1 (1% shaking event
after model construction). This figure also includes the corresponding vertical stress (ov) at the
sensor locations (i.e. ov= yz where y is the unit weight of 120 pcf and z is depth of a pressure sensor
measured from the surface). As shown in Figure 4-2, the static lateral pressure was generally
higher than the vertical stress due to the manner of employed compaction. This higher static lateral
pressure dropped considerably at the beginning of the shaking phase (about 2.5 sec), particularly
during NorlO0PT1 (Figure 4-1). At the peak racking towards East (at about 5 sec), the
corresponding lateral pressure was still lower than the static values. Afterwards, as the test
continued (also the level of the shaking increased), the lateral pressure at peak racking tended to
be higher than the static values (Appendix D presents the earth pressure time histories for all the
shaking events where the pressure sensors functioned).

During the entire studied cases, peak racking generally occurred as the tunnel moved
towards East. At peak racking, it can be seen that the lateral pressure increased near the roof (as
the soil pushed the tunnel) but decreased near the base (as the tunnel base moved away from the
soil) on the West wall, and vice versa on the East wall (Figure 4-3). Consequently, the total lateral
pressure exerted on the West wall was in a shape of inverted-triangular distribution, with a

triangular distribution on the East wall (Figure 4-3). This figure also presents the relative lateral
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pressure on the West wall with respect to the East wall (as net pressure). In general, the net pressure
was in a shape of the inverted-triangular distribution in the upper part. The negative net pressure
did not contribute to the wall deformation, implying the resulting force was located above one half
of the wall height.

4.2.2. Model 3 (1ft overburden soil)

Model 3 (backfill compacted at about 85% Dy) earth pressure time histories along the wall
height (7 locations) are shown in Figure 4-4 for Norl00PT2 (1% shaking event after model
construction). Associated with the employed compaction effort and thickness of the overburden
soil, the lateral pressure was somewhat lower or higher than the vertical stress. As peak racking
towards East, lateral pressure was higher than the static values on the West side of the tunnel in
most cases. Similar to Model 1, lateral pressure tended to increase near the roof but decreased near
the base on the West wall, and vice versa on the East wall.

As the test continued (the shaking intensity became relatively stronger), the net pressure
distribution tended to be in the shape of an inverted-triangle (Figure 4-5) as shown in Model 1
(Figure 4-3). The resulting pressure also increased as the test continued, and its location was likely
to be located at the middle of the wall.

4.3. Resultant Lateral Earth Pressure Force and Point of Action

Figure 4-6 shows a schematic view of the resultant force and the associated point of action.
It is noted that the pressure sensors near the base (e.g. TS 01 and TS 11 as shown in Figure 4-1)
were excluded in computing the resultant force because the pressure measured from these sensors
are irrelevant to wall deformation. For quantifying this contribution to the tunnel deformation, the
difference of the product of the resultant force and the point of action on the East wall with respect

to the West wall was taken into consideration (designated as resultant moment in this study).
4.3.1. Reference resultant force

For comparison, a reference resultant force (Prer) was introduced. For Prer, it was assumed
that the horizontal pressure (on) was equal to the vertical pressure (ov, i.€. on = oy or the coefficient
of earth pressure at rest, K = 1.0). Figure 47 illustrates Pres acting on the wall excluding the base
part. The corresponding Prer for Models 1 and 3 are as follows:
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1. Model 1: 1,137 Ib/ft per unit wall length of 1 ft (where y is the unit weight of the backfill, 120

pcf).
2. Model 3: 696 Ib/ft per unit wall length of 1 ft (where y = 104 pcf)

4.3.2. Model 1 (2ft overburden soil)

The time histories of the resultant force and the associated point of action are shown in
Figure 4-8 through Figure 4-12 (in the order of the shaking sequence). These plots also included
the main recorded response such as ground surface acceleration and racking, as shown earlier in
Section 3.

As discussed earlier in Section 4.2, the static force was relatively higher than the vertical
force (compared to Prer of 1137 Ib/ft for Model 1). This higher static force significantly dropped at
the beginning of shaking. Afterwards, the resultant force tended to become lower than the static
value even at the peak racking towards East. At this racking, the West resultant force was relatively
higher than that on the East side. Meanwhile, the point of action on the West side was likely to be
lower than that on the East side. As such, the upward (West wall) and downward (East) resultant
forces contributed to the observed peak racking, rather than higher lateral force on the West wall.

The resultant moment time histories showed a good agreement with the measured ground
surface acceleration in terms of response phase. It can be seen that the peak resultant moment

coincided with the racking.
4.3.3. Model 3 (1ft overburden soil)

Time histories of the resultant force and the associated point of action are shown in Figure
4-13 through Figure 4-19 (in the order of the shaking sequence). Associated with the relatively
lower compaction effort and shallow overburden soil, the static force was more or less similar to
Pref (696 Ib/ft assuming K = 1.0). At peak racking towards East, both resultant force and point of
action on the West wall were higher than those on the East wall. As observed in Model 1, the
resultant moment time histories showed good agreement with the ground surface acceleration in

terms of response phase as well as occurrence of peak values.
4.4. Discussion of resultant force and point of action

In this entire study, racking and wall bending moment were quantitatively obtained from

the employed displacement sensors and strain gauges. Along with these data sets, the resultant
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force measured from the Tactilus pressure sensors still provided valuable insights in understanding
the deformation mechanism of the tunnel. As such, this section includes further discussion of the

resultant force and the point of action, associated with the tunnel deformation.
4.4.1. Analytical solution for tunnel deformation

The resultant force and the associated point of action on both sides of the tunnel
simultaneously contributed to the tunnel racking and the bending moment (Figure 4-20). For the
rigid base and roof in the test model (see Section 2.2), the tunnel racking and bending moment at
the wall base can be computed in an analytical approach as illustrated in Figure 4-20.

4.4.2. Tunnel deformation estimated from resultant force and point of action

Associated with the tunnel geometry (curved roof), it might be expected that the
overburden soil shearing along the roof surface would induce more deformation. Racking
(dynamic component) estimated from the resultant force (and the point of action) was generally
less than that measured directly from the displacement sensor. At peak racking towards East, the
West soil pushed the wall and, simultaneously, the East soil tended to move away from the wall.
In this situation, as discussed earlier, the earth pressure in the upper part of the East wall was
reduced with respect to the static value. However, the pressure record did not possibly capture that
the overburden soil dragged the tunnel roof towards East. This additional behavior contributed to
more deformation than that due to the lateral resultant force exerted on both sides of the tunnel.
Unfortunately, the Tactilus pressure data from the test model without overburden soil (Model 2)
were not available to validate this contribution. As an alternative, a numerical model validated
from the test result shall shed light on this contribution.

In this study, the measured resultant force and the associated point of action served as the
lower bound for wall deformation as shown in Figure 4-8 through Figure 4-19. Particularly under
relatively strong shaking (e.g., during Nor200PT1, Tak100PT1, and Tak100PTO input excitations),
the total bending moment estimated from the resultant force and point of action showed good
agreement with that from the strain gauges (but the static value was still obtained from the Tactilus

pressure sensors).
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4.5. Summary

Based on the lateral earth pressure measured from the Tactilus pressure sensors, the
following observations are made:

1. At peak racking towards East, difference of the lateral earth pressure on the West wall with
respect to the East side (net pressure) was in a shape an inverted triangular distribution.

2. Peak racking is caused by the relative difference between resultant forces and associated point
of action on both sides of the tunnel. For instance, generally at peak racking eastwards, the
following mechanisms were involved:

For 1ft overburden soil (D of 85%):

e The resultant force and point of action on the West wall were high, and

e The resultant force and point of action on the East wall were low,

e Reduction of the resultant force on the East wall was a main reason for the observed peak
racking (rather than the increase of the resultant force on the West wall).

For 2 ft overburden soil (Dr of 99%):

e The resultant force on the West wall was low but associated point of action was high, and

e The resultant force on the East wall was high but associated point of action was low,

e Upward and downward shift of the resultant forces on the West and the East wall,
respectively, was a main reason for the observed peak racking (rather than the increase of
the resultant force on the West wall).

3. Wall bending moment estimated from the resultant forces and associated point of action

showed reasonable agreement with that from the strain gauge data under relatively strong

shaking.
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Figure 4-13: Model 3 resultant earth pressure force, point of action, and total wall bending moment
at wall base for Nor100PT2 in model scale (1ft overburden soil)
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Figure 4-14: Model 3 resultant earth pressure force, point of action, and total wall bending moment
at wall base for Nor100PT1 in model scale (1ft overburden soil)

62



I T T T
L At ground surface eak racking toward East

Accelerometer |

o=
oh i

Acceleration
@
_IO
N

08 r Peqk racking toward‘ West— 7
-1.2

0.12 "Racking (dynamic component)
0.06 -

Displacement sensor

Displacment
(in)
o

-0.06

-0.12
1000

800
600
400
200

T T T
West wall from pressure sensors
East wall from pressure sensors |

Resultant force'

Resultant force
(Ib/ft)

T T T
West wall from pressure sensors
East wall from pressure sensors

08r

Point of action

1600
1200
800
400

-400
-800
-1200 |-
-1600

012 ryotal racking (static frorh pressure|/densors)
0.06

Resultant moment
(Ib-ft/ft)
o

Pressure sensor

Displacement sensor |

Displacment
(in)
o

-0.06 [

West wall from pressure sensors
West wall from strain gauge + static from pressure sensors

-0.12
800

: ‘ East wall from pressure sensors
Total wall bending moment at base = East wall from strain gauge + static from pressure sensors

400

(Ib-ft/ft)

-400

Bending moment

-800

Time (sec)

Figure 4-15: Model 3 resultant earth pressure force, point of action, and total wall bending moment
at wall base for Nor100PTO in model scale (1ft overburden soil)
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Figure 4-16: Model 3 resultant earth pressure force, point of action, and total wall bending moment
at wall base for Tak100PT2 in model scale (1ft overburden soil)
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Figure 4-17: Model 3 resultant earth pressure force, point of action, and total wall bending moment
at wall base for Nor200PT1 in model scale (1ft overburden soil)
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Figure 4-18: Model 3 resultant earth pressure force, point of action, and total wall bending moment
at wall base for Tak100PT1 in model scale (1ft overburden soil)
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Figure 4-19: Model 3 resultant earth pressure force, point of action, and total wall bending moment
at wall base for Tak100PTO in model scale (1ft overburden soil)
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5. Shake Table Test Result in Prototype Scale
5.1. Introduction

The tested model was designed to represent a 1/9 scale model in terms of the geometric
dimensions and lateral stiffness of the employed steel tunnel walls. The associated scaling laws
were applied to the recorded test results to interpret the full-scale model response (in prototype
scale). Among the seven earthquake motions, the time duration of Nor100PT2 and Tak100PT2
were appropriately compressed by a factor of 5.2, associated with the model frequency. As such,
these two shaking events are mainly discussed. In addition, the shaking cases such as Nor100PTO,
Tak100PT1, and Tak100PTOO where the PGV exceeds 10 ft/s (the associated scale factor of 5.2)
were excluded because this level of shaking is hardly manifested in actual situations. All quantities

presented in this chapter are in prototype scale unless otherwise noted.
5.2. Scaling Law

Table 5-1 summarizes the main scaling factors derived by lai (1989). The scaling factors
for the tunnel are specified per unit length in two dimensions (2D). In particular, the scale factor
for the displacement was 27 (= 9°), compared to the dimensional factor of 9. As such, the tunnel
racking in terms of drift was three times larger than that in model scale. Further details of the

scaling laws and related derivation are presented in Appendix D.
5.3. Peak Dynamic Response

As shown earlier in Section 3.3 (in model scale), the recorded (but scaled) time histories
of the main response of Models 1-3 for Norl00PT2 and Tak100PT2 are presented in Figure 5-1
through Figure 5-6. Table 5-2 summarizes the main peak response values from all the test models
in the order of the shaking sequence in terms of:
1) Peak ground acceleration and velocity (PGA and PGV)
2) Ground acceleration and velocity at levels of the tunnel roof and base
3) Tunnel acceleration at the roof and the base
4) Ground distortion between top and bottom of the tunnel wall obtained from double integration

of the ground acceleration (above Item 2)

5) Tunnel racking

6) Wall bending moment at the base and top
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7) Tunnel base translation relative to the laminar container
5.3.1. Model 1 Nor100PT2

For Nor100PT2 (Figure 5-1), the following observations are drawn:

e Peak ground acceleration (PGA) was about 0.42g.

e Peak racking was about 0.59 inch (0.17% drift divided by the tunnel height of 30 ft) as the test
model moved towards East (at 18.2 sec.)

e Peak racking coincided with other peak responses such as PGA, ground distortion, and wall
bending moment.

e Ground distortion (shear deformation herein) was about 1.66 inch (about 0.46%, also divided
by the tunnel height). Compared to the peak racking, this distortion was as much as about three
times, indicating that the ground surrounding the tunnel was relatively softer than the tunnel.
The ratio of the racking to the ground distortion, also known as the racking coefficient (Wang
1993; FHWA 2009) was about 0.36.

e Similar peak bending moment (about 140 Kip-ft/ft; dynamic component) occurred near the top

and bottom of both tunnel walls.
5.3.2. Model 1 Tak100PT2

For Norl00PT2 (Figure 5-2), the following observations are drawn:

e Peak ground acceleration (PGA) was about 0.75g.

e Peak racking was about 3.97 inch (1.1% drift divided by the tunnel height of 30 ft) as the test
model moved towards East (at 17.7 sec.)

e Peak racking generally coincided with other peak responses such as PGA, ground distortion,
and wall bending moment.

e Ground distortion (shear deformation herein) was about 8.2 inch (about 2.3%, also divided by
the tunnel height). Compared to peak racking, this distortion was as much as about twice,
indicating that the ground surrounding the tunnel was relatively softer than the tunnel (the
corresponding racking ratio of about 0.5).

e Peak bending moment of about 450 kip-ft/ft (positive moment) occurred near the base of the
West wall. On the East wall, larger bending moment of 480 Ib-ft/ft (negative moment) was

observed near the base.
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5.3.3. Summary of Peak Dynamic Response from All Shaking Events

From each test model, peak racking generally coincided with PGA (based on the time
history plots as shown in Figure 5-1 through Figure 5-6). The level of peak racking was also
proportional to the PGA and PGV (Figure 5-7). Among all the shake table tests, the maximum
racking (dynamic component) was about 4 inches (1.1% drift ratio) which occurred in Model 1
during Tak100PT2 input excitation. In this case, the East wall suffered the highest bending
moment at the base (about 480 kip-ft per unit wall length of 1ft; Figure 5-8). The level of the wall
bending moment was essentially dictated by peak racking (Figure 5-9).

Under identical earthquake input excitation for different test models, the PGA and PGV
tended to slightly decrease as the thickness of overburden soil increased (e.g. during Nor100PT2,
0.64g in Model 2, 0.52g in Model 3, 0.42g in Model 1). Despite this trend, the level of peak racking
tended to increase along with higher overburden soil pressure (Figure 5-7). As discussed earlier
in Section 3.4, this trend was associated with the lower degree of strain softening of the
surrounding soil and corresponding higher flexibility and racking ratios (Figure 5-10). For the
given soil displacement demand, the higher the flexibility ratio, the larger the tunnel deformation
(Wang 1993).

5.4. Resultant Lateral Earth Pressure Force

As presented earlier in Section 4.3 (in model scale), the resultant force and the associated
point of action were interpreted in prototype scale. The time histories of these quantities are shown
in Figure 5-11 from Model 3 for Nor100PT2 as well as the following response:

1) Ground surface acceleration

2) Tunnel racking

3) Resultant moment as the difference of the product of the resultant force and the point of action
on the East wall with respect to the West wall

4) Total wall bending moment including the static value estimated from the resultant force and
point of action, compared to that from strain gauges (from which only the dynamic component
was added to the same static value).

Similar plots from Model 3 during Nor100PT1, Tak100PT2, and Nor200PT1 are shown in Figure

5-12 through Figure 5-16. Model 1 resulting time histories are shown in Figure 5-15 and Figure

5-16 for Nor100PT1 and Nor200PT1, respectively.
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5.4.1. Total wall bending moment

As discussed earlier in Section 4.4, Figure 5-17 shows the peak total bending moment for
which the dynamic component from the strain gauge and the static value from the resultant force
and point of action. In the entire studied cases, maximum total bending moment was about 920
Kip-ft per unit wall length of 1ft from Model 1 during Nor200PT1 (the corresponding dynamic
moment about 450 kip-ft). This total bending moment exceeds the bending moment capacity of
about 300 kip-ft of the 1/3 reinforced concrete (RC) test model (Kim et al. 2015). As such, the
required ductility may be necessary to reach a value of 3 in view of inelastic response. It is noted
that the dynamic bending moment for Tak100PT2 (Model 1) was relatively higher than that for
Nor200PT1 (Figure 5-17) but the static value was not available in this case. The dynamic bending
moment for Tak100PT2 (Models 1 and 3) and Nor200PT1 (Model 1) was also higher than the
capacity (1/3 RC test model in prototype scale).
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Table 5-1:

Main scaling factors for 1g model tests (lai 1989)

Scaling factor (prototype to 1/9 scale)

Quantity Generalized Ao = 205, hp=1 CASE of .= 9
scaling factors

Length A A 9
Density Ao 1 1
Time (M) 207 5.2
Acceleration 1 1 1
Velocity (Mhe)?® 207 5.2
Displacement Me ALS 27
Stress A A 9
Strain Ae A0S 3
Stiffness Moo/ Ae A0S 3
ElI* AN/ 23S 2187
EA* A2hp/Ae L5 27
Moment* A2 23 729
Shear* A2hp A2 81
Axial Force* A2hp A2 81

*specified per unit breadth of the tunnel along its longitudinal axis (based on 2D Plane Strain)
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Table 5-2: Peak dynamic response of ground and tunnel in prototype scale

Bending moment (kip-ft)

= g At surface At level of tunnel top At level of tunnel base Soil . Base
g = EQ distortion REEIE West wall East wall translation
s 4 PGA RGV Acc. \_/el. Tunnel | Acc. \/el. Tunnel (%) (%) Top Base Top Base (%)
(9 (infs) | (9) | (infs) () (@ [ (infs) ()
1| Norl00PT1 | 0.60 35 0.52 3.1 0.45 0.33 1.7 0.33 0.87 0.50 198 239 -230 -191 0.03
2| Nor200PT1 | 1.06 8.1 0.82 7.1 0.71 0.79 4.4 0.68 3.12 0.94 451 395 -382 -440 0.29
3| Norl00PTO | 0.90 9.6 0.80 9.2 0.72 0.55 6.6 0.58 4.00 1.17 430 501 -483 -451 0.38
1| 4| Tak100PT1 | 0.88 15,5 0.86 15.1 0.78 0.74 12.1 0.76 4.69 1.39 533 618 -573 -576 0.35
5| Tak100PTO | 0.79 15.3 0.77 15.4 0.74 0.70 13.8 0.71 3.55 1.14 499 530 -479 -568 0.20
6| NorlOOPT2 | 0.42 1.6 0.38 1.6 0.29 0.26 1.1 0.24 0.46 0.17 120 144 -135 -121 0.01
7| Tak100PT2 | 0.75 6.0 0.73 5.9 0.60 0.49 3.0 0.49 2.27 1.10 448 449 -425 -480 0.22
1| Norl0OPT2 | 0.64 2.1 0.64 2.1 0.39 0.36 1.0 0.32 0.72 0.03 43 74 -59 -56 0.02
2| Norl00OPT1 | 0.96 35 0.96 35 0.49 0.44 21 0.41 1.83 0.08 77 108 -84 -97 0.17
3| Norl00PTO | 1.19 10.1 1.19 10.1 0.85 0.76 6.5 0.85 8.51 0.32 144 197 -150 -178 0.78
2| 4| Tak100PT2 | 1.45 7.7 1.45 7.7 0.74 0.65 4.1 0.77 4.94 0.31 133 187 -140 -166 0.61
5| Nor200PT1 | 1.27 9.6 1.27 9.6 0.83 0.81 5.8 0.77 6.56 0.28 127 146 -109 -158 0.59
6| Takl00PT1 | 1.36 175 1.36 175 0.76 0.75 113 0.77 8.08 0.24 143 169 -124 -178 0.58
7| Tak100PTO | 0.92 15,5 0.92 155 0.81 0.64 13.7 0.78 5.88 0.23 112 185 -109 -173 0.54
1| Norl00PT2 | 0.52 2.0 0.39 1.6 0.37 0.33 0.9 0.28 0.63 0.15 112 131 -118 -117 0.02
2| Norl00PT1 | 0.78 35 0.50 2.7 0.48 0.39 1.8 0.34 1.31 0.30 183 177 -164 -192 0.13
3| Norl0OPTO | 1.04 10.5 0.87 9.2 0.87 0.70 6.3 0.81 5.35 0.70 292 311 -273 -320 0.49
3| 4| Tak100PT2 | 0.80 6.3 0.76 5.8 0.74 0.58 3.7 0.65 3.43 0.69 281 317 -274 -315 0.45
5| Nor200PT1 | 1.11 9.4 0.83 7.4 0.79 0.77 5.1 0.75 531 0.56 241 263 -228 -269 0.42
6| Tak100PT1 | 0.95 16.2 0.91 16.0 0.82 0.74 11.3 0.79 8.99 0.77 311 338 -307 -366 0.72
7| Tak100PTO | 0.80 16.3 0.81 15.7 0.77 0.63 13.7 0.74 6.50 0.67 286 299 -276 -342 0.59
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Figure 5-15: Model 1 resultant earth pressure force, point of action, and total wall bending moment
at wall base for Nor100PTL1 in prototype scale (18 ft overburden soil)
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Figure 5-16: Model 1 resultant earth pressure force, point of action, and total wall bending moment
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6. FHWA Racking and Bending Moment Estimation

6.1. FHWA step-by-step procedure

This section presents dynamic (seismic) racking and bending moment estimated using the
FHWA step-by-step procedure (FHWA 2009). Table 6-1 summarizes the FHWA step-by-step
procedure. In this procedure, PGA is used as a main design parameter to derive earthquake-induced
shear stress (zmax) at depth of the tunnel base. At this wmax, the resulting shear strain is computed
using an average strain-compatible shear modulus (Gm) in the surrounding soil. Once the Gn is
obtained, racking is computed using relative stiffness of the tunnel and the surrounding soil (known
as flexibility ratio, Fr) as well as racking coefficient (or racking ratio, Rr) according to Wang
(1993). To estimate Gm, the EPRI shear modulus reduction curves (EPRI 1993) were used in this
study.

6.2. Ground Design Parameters in Model Scale

For use of the FHWA procedure in this study, the tunnel backfill soil was assumed to be
compacted at no less than 95% relative compaction according to Caltrans Standard Specification
(Caltrans 2015). Earth Mechanics, Inc (EMI 2005) performed an intensive field investigation and
characterization of abutment backfill at wide bridges sites in California. EMI (2005) summarized
the Standard Penetration Test blow count (N) recorded on the boring logs at a depth of 5 ft with N
ranging from 10 to 90, depending on the investigated soil types. In our study, the standard
penetration number corrected for field condition (Neo) was used rather than N. However, all the
correction factors such as hammer efficiency, borehole diameter, and so forth were considered as
1.0 for simplicity (i.e., Neo = Nspt). Within the range of the N presented in EMI (2005), the backfill
properties for the FHWA procedure were determined using Neo of 42. As summarized in Table 6—
2, Neso was used to determine shear wave velocity (converted to low-strain shear modulus) at mid-
depth of the tunnel. Furthermore, (N1)eo corrected for overburden pressure was used to determine
shear strength (Sy) at 3% shear strain (Table 6-2).

For the design PGA in the FHWA procedure, a range of PGA from 0 to 1.4g was taken
into consideration, encompassing recorded PGA from the shake table tests. Three different depths
of the tunnel were used as in the test configurations (i.e. depth of overburden soil with 0, 1 and 2

ft in model scale).
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To determine Fr and G in the FHWA procedure, one of the EPRI shear modulus reduction
curves (for depth of 50 ft to 120 ft as shown in Figure 6-1a) was used along with low-strain shear
modulus (Gmax) of 6,730 psi based on Neo of 42 (Table 6-2) at the mid-depth of the tunnel wall.
This curve was selected because the shear stress at relatively high level of shear strain (3% shear
strain in this study) should to be greater than zmax computed from the measured PGA during the
test (Table 6-1). Sy was determined using a cohesion (c) of 8.5 psi and a friction angle of 52 degrees
(Table 6-2), instead of ¢ of 2 psi measured from the triaxial test as presented earlier in Section
2.3.2. As Ngo of 42 was used, the measured c of 2 psi still provided a margin of the Sy that was
higher than the FHWA tmax. However, as presented in EMI (2005), a wide range of Neo represented
possible backfill material compacted at Dy of 95% at the depth of our interest. As a lower value of
Neo Was considered, the corresponding Sy at 3% shear strain became lower than the FHWA zmax
resulting from a design PGA higher than 0.8g. Thus, the FHWA procedure could not be used to
estimate racking. In this regard, the higher ¢ of 8.5 psi allowed systematic application of soil
properties in the FHWA procedure, associated with the wide range of studied Neo to determine

low-strain shear modulus. Further discussion of this range will be presented later.
6.3. Comparison of FHWA estimate to Test Result in Model Scale
6.3.1. Racking

Using the employed soil material properties (Table 6-2), the racking and wall bending
moment at base were computed using the FHWA procedure (see the case of Neo = 42 in Table 6—
3). Compared to the test result, the following observation are drawn:

e Model 1: overburden soil depth of 2 ft
— The FHWA racking generally agreed with the test results.
e Model 2: without overburden soil
— The FHWA racking was significantly higher than the test results in all cases (as much as
seven times on average).
e Model 3: overburden soil depth of 1 ft

— The FHWA racking was generally higher than the test result (as much as twice on average)
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6.3.2. Sensitivity of backfill material properties in the FHWA procedure

It was found that appropriate selection of the backfill material properties is critical in the
FHWA procedure. As such, to further extend this study, the backfill material properties was varied
within a range of Neo from 25 to 60 (associated shear wave velocity from 456 ft/s to 550 ft/s at
depth of 3.3 ft). As presented in EMI (2005), this variation of Neo represented possible backfill
material compacted at D of 95% at the depth of interest in our study. The design PGAs also varied
in the range from 0.2g to 1.4g. The resulting racking and wall bending moment in the FHWA
procedure are shown in Figure 6-2 through Figure 64 for thickness of overburden soil of 2 ft
(Model 1), 0 ft (Model 2), and 1 ft (Model 3), respectively. Among these results, the FHWA
estimates using backfill based on Neo of 25 and 60 are also summarized in Table 6-3 as lower and
upper bounds, along with those from Neo of 42 as shown earlier. From these plots, the following
observation was drawn:

e As the design PGA increased (higher than about 0.6g and the resulting shear strain larger than
about 0.1%), the FHWA racking and bending moment significantly varied with the change of
the backfill material properties.

e Model 1 with 2 ft overburden soil
— The test results generally agreed with the range of FHWA racking estimates
— Asstiffness of the backfill material increased (towards Neo of 60), the FHWA racking tended

to be underestimated in comparison to the test results.

e Model 2 without overburden soil
— The FHWA procedure overestimated racking.

— As stiffness of the backfill material increased (towards Neo of 60), the degree of the
overestimation from the FHWA procedure decreased.

— It was noted that the backfill behind the tunnel wall in the test model was compacted at Dy
of 85%. As such, the test result was associated with a relatively compliant soil (less than
Neo of 25). In this case, the degree of overestimation further increased.

e Model 3 with 1ft overburden soil depth
— The FHWA racking was higher than the test result under relatively weak-moderate

earthquake excitations (PGA less than 0.6g).
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— The FHWA racking was close to the test results under relatively strong earthquake
excitation (PGA higher than 0.6 g), except for the cases where the PGA exceeded 1g.

— Similar to Model 2, the backfill was compacted at D; of 85% in the test model. If the
relatively soft material was included in the FHWA procedure (Neo less than 25), the FHWA

overestimation was noticeable in all the cases studied.
6.3.3. Discussion of wall bending moment

Although the racking estimates from the FHWA procedure (using Neo of 42; the average
value to represent backfill with 95% relative compaction) was higher than the test result, the
FHWA bending moment estimates were relatively lower as shown in Figure 6-2 through Figure
6-4. In the FHWA procedure, the bending moment was computed by imposing the FHWA racking
in an additional frame analysis under two different pseudo-static lateral force conditions (Figure
6-5). Under the pseudo-triangular pressure distribution along both walls (Figure 6-5b), higher
bending moment was obtained in this study.

As discussed earlier in Section 4, the lateral earth pressure distribution was asymmetric on
both sides of the tunnel with the following deformation mechanisms:

1. 1 ft overburden soil (D of 85%),
— The high primary (or governing) resultant force and point of action were high.
— On the other side of the tunnel, the corresponding resultant force and point of action were
low (this was the main contribution).
2. 2 ftoverburden soil (Dr of 99%),
— The governing resultant force was low but associated point of action was high.
— The other resultant force was high but associated point of action was low.
— Upward and downward shift of point of action of the resultant forces was a main reason for
the tunnel deformation rather than the increase of the resultant force.
As such, the above aspects may be worth taking into consideration when developing a simplified

procedure, depending on the thickness of overburden soil (or burial depth of tunnel).
6.4. Comparison of FHWA estimates to Test Results in Prototype Scale

The FHWA procedure was used to estimate racking and wall bending moments for the
prototype structure (scaled by a geometric scaling factor of 9). It is noted that the two input motions

of Norl00OPT2 and Tak100PT2 were appropriately scaled to represent earthquake frequency

94



content for the prototype scale (the time duration was compressed by a factor of 5.2). As conducted
for the model scale, identical material properties for tunnel backfill were used (Table 6-2). For
depth of the tunnel in prototype scale, tmax derived from the design PGA appeared to be higher than
the shear stress using the EPRI shear modulus reduction curve for depth from 250 ft to 500 ft. As
such, this EPRI curve was modified to increase shear strength at shear strain of 3% as shown in
Figure 6-6. This modification was performed using the pseudo-reference strain hyperbolic (PRHS)
model (Gingery and Elgamal 2013).

Table 6-4 summarizes the racking and wall bending moment computed using the FHWA
procedure, along with the test results in prototype scale for comparison. As mentioned earlier in
Section 6.2, the backfill material properties varied with Neo from 25 to 60. The corresponding
FHWA estimates are shown in Figure 6-7 through Figure 6-9, for different thickness of
overburden soil such as 18 ft (Model 1), 0 ft (Model 2), and 9 ft (Model 3), respectively. In general,

very similar observations to the model scale scenario are noted.
6.5. Summary

Racking and wall bending moment were computed using the FHWA procedure and
compared to the test results in model and prototype scale. To represent the actual backfill condition
at a tunnel site, standard penetration blow count corrected for field conditions (Neo of 42) was
considered. It appeared that the FHWA procedure was sensitive to the employed backfill material
properties. As such, a wide range of backfill material properties (representing the backfill
compacted at 95% relative density) was taken into consideration. It was difficult to find a trend in
the FHWA estimates in the light of over-/under-estimation for seismic racking and bending
moment. However, the following observations could be drawn and may be considered towards
improvements in the current procedure:

e As the earthquake intensity increased (PGA higher than about 0.6g), the FHWA procedure
tended to be relatively sensitive to the backfill material properties. This sensitivity resulted from
a wide variation in shear strain in the surrounding soil between the top and bottom elevation of
the tunnel. As such, the FHWA procedure should be applied with caution for strong earthquake

shaking scenarios.
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e For the relatively deep tunnel scenario in this study, the FHWA procedure predicted to some
extent adequate degree of racking compared to the test result. As the tunnel was placed at
relatively shallower depths, conservatism of the FHWA was noticeable.

e In the FHWA procedure, the wall bending moment was essentially dictated by the resulting
racking (linear-elastic model). The application of the recommended pseudo-static lateral force
model in the FHWA procedure produced conservatism in racking and even more so in
estimating bending moment. As observed in the tests, the loading mechanism in terms of
asymmetric resultant force and different location of the associated point of action on both sides
of the tunnel may be worth considering in an updated simplified procedure. For this purpose,
further analysis shall be needed to quantify seismic loading distribution under various
conditions of the backfill materials, burial depth, earthquake characteristics, and so forth.
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Table 6-1: Summary of FHWA (2009) step-by-step procedure for racking analysis of rectangular
tunnels

Step 1  Estimate the free-field ground strains ym (along the tunnel height); determine free-
field relative displacement (Afree-field) COrresponding to the top and the bottom
elevation of the tunnel

i) On the basis of PGA- Afree-field = H ym,
where ym = tm [ Gm , Tm = (PGA/Q)ov Rd , v = yt (h+H)
Step2  Determine the racking stiffness (Ks) of the box structure from a structural frame
analysis
Step 3  Determine the flexibility ratio Fr = (Gw/Ks) (W/H)

Step 4  Determine the racking coefficient, Ry
_ 4(1-vp)Fy

Rr= ——mt

3—4vy+Fr

for no-slip interface condition

e o »
= 20vm)Pr g0 fll-slip interface condition
2.5-3vp+F;

Step5  Determine the racking deformation of the tunnel, As = Rr Afree-field
Step 6  Obtain the seismic demand in terms of internal forces (and material strains) by
imposing As in a frame analysis

*H = Height of the box structure
W = Width of the box structure
G,, = Effective strain-compatible shear modulus of ground surrounding tunnel

vm = Poisson’s ratio of the surrounding soil (in our study, v, of 0.4 was used)

Tmax = Maximum earthquake-induced shear stress (ksf)

ov = Total vertical soil overburden pressure at invert elevation of tunnel (ksf)

y; = Total soil unit weight (kcf)

h = Soil cover thickness measured from ground surface to tunnel crown (ft)

R4 = Depth dependent stress reduction factor; Rd = 1.174 — 0.00814z for 30 ft <z <75 ft, z=
depth (ft) from ground surface to the invert elevation of the tunnel and is represented by
z = (h+H)
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Table 6-2: FHWA design parameters for tunnel located at depth of 5.3 ft

Design Parameter Value

Site Class? D

Neo 42

Depth of middle of tunnel wall 3.67 ft

Unit weight, y 120 pcf

Shear wave velocity, Vs? 510 ft/s (155 m/s)
Low-shear modulus, Gmax® 6730 psi

Friction angle, ¢* 52 degrees

Shear strength, Sy° 10 psi

ICaltrans/NEHRP soil profile type based on SPT N-value

2Vs = 30 Ngo®?® 6,22 (Wair et al. 2012) where o, = yz in kPa and z = depth of middle of tunnel
wall.

3Gmax = Vs?p where p is soil density = y/g

49 = (15.4 (N1)s0)*® + 20 where (N1)so = corrected N value to a standard value of g, (13.9 psi),
(N1)so = CnNeo and Cn = 2/(1+0v’) in normally consolidated sands for fine sands of medium
density where o’ = effective overburden pressure in ton/ft? or kg/cm? or kPa/100 (Skempton
1986). In this study, Cn = 1.65 and oy = 21 kPa (3.1 psi)

%S, = ¢ + om sin(¢) where ¢ is cohesion (¢ = 8.5 psi) and amis confining stress at depth of middle
of tunnel wall (om = 2.1 psi); om = (ov + 20n)/3 Where oy = vertical stress and on = horizontal
stress, Koov, Ko = V/(1-v), v = Poisson’s ratio (0.35 in this study);
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Table 6-3: Racking and wall bending moment estimated using FHWA step-by-step procedure (FHWA 2009) as well as the test results

in model scale
FHWA? (2009) Test (model scale)
3 2 PG Neo = 42 Neo = 25 Neo = 60
E E EQ A Racking Moment? Racking Moment3 Racking Moment3 Racking Mo'ment3
o © '?(;(')‘;t Ratio* | kipfi Ratio* '?(;St Ratio* | kipft  Ratio? '?(;‘;t Ratio* | kipft Ratiot | 0 &P
1 Nor100PT1 | 0.60 0.17 0.94 0.47 144 0.22 1.27 0.64 1.94 0.13 0.76 0.38 1.16 0.18 0.33
2 | Nor200PT1 | 1.06 0.50 1.55 1.44 2.38 0.77 2.37 2.20 3.65 0.36 1.09 1.02 1.68 0.33 0.60
3 | Norl00PTO | 0.90 0.33 0.83 0.95 144 0.53 1.32 151 2.28 0.26 0.65 0.75 1.13 0.40 0.66
1 4 | Takl00PT1 | 0.88 0.32 0.67 0.91 1.15 0.50 1.05 143 1.81 0.25 0.53 0.72 0.91 0.48 0.79
5 | Tak10OPTO | 0.79 0.26 0.70 0.75 0.96 0.38 1.03 1.10 1.41 0.20 0.55 0.59 0.75 0.38 0.78
6 | Norl00PT2 | 0.42 0.10 1.93 0.28 1.39 0.13 2.53 0.36 1.83 0.08 1.60 0.23 1.16 0.05 0.20
7 | Tak1lOOPT2 | 0.75 0.24 0.64 0.68 1.03 0.33 0.89 0.95 1.44 0.19 0.51 0.54 0.82 0.38 0.66
Average of ratios 1.04 1.40 1.49 2.05 0.81 1.09
1 Norl00PT2 | 0.64 0.15 17.51 0.44 4.25 0.20 22.81 0.57 5.54 0.13 14.55 0.36 3.53 0.01 0.10
2 | Norl00PT1 | 0.96 0.30 11.84 0.85 6.02 0.45 17.67 1.28 8.99 0.24 9.59 0.69 4.88 0.03 0.14
3 Norl00PTO | 1.19 0.50 4.67 1.44 5.70 0.65 6.07 1.87 7.40 0.38 3.50 1.08 4.27 0.11 0.25
) 4 | Tak100PT2 | 0.90 0.27 2.62 0.77 3.26 0.39 3.79 111 4,71 0.22 2.14 0.62 2.65 0.10 0.24
5 Nor200PT1 | 1.27 0.58 6.12 1.66 7.68 0.72 7.56 2.05 9.48 0.44 4.63 1.25 5.80 0.09 0.22
6 | Takl100PT1 | 0.82 0.23 2.81 0.65 2.66 0.32 3.91 0.90 3.71 0.18 2.28 0.53 2.16 0.08 0.24
7 | Takl100PTO | 0.92 0.28 3.66 0.79 3.35 0.40 5.32 1.16 4.88 0.23 2.97 0.65 2.73 0.08 0.24
Average of ratios 7.03 4.70 9.59 6.39 5.67 3.72
1 Norl100PT2 | 0.52 0.12 2.37 0.34 191 0.16 3.13 0.45 2.52 0.10 1.98 0.29 1.60 0.05 0.18
2 Nor100PT1 | 0.78 0.23 2.33 0.66 2.50 0.32 3.21 0.91 3.45 0.18 1.87 0.53 2.01 0.10 0.26
3 Norl00PTO | 1.04 0.41 1.77 1.19 2.70 0.63 2.66 1.79 4.07 0.31 1.30 0.88 2.00 0.23 0.44
3 4 | Tak100PT2 | 0.80 0.24 1.05 0.69 1.59 0.34 1.49 0.97 2.25 0.19 0.84 0.55 1.27 0.23 0.43
5 Nor200PT1 | 1.11 0.49 2.60 1.39 3.76 0.71 3.77 2.02 5.46 0.35 1.85 0.99 2.68 0.19 0.37
6 | Tak1lO0OPT1 | 0.83 0.25 0.99 0.73 1.45 0.37 1.45 1.06 2.12 0.20 0.79 0.58 1.16 0.26 0.50
7 | Takl100PTO | 0.80 0.24 1.08 0.69 1.46 0.34 1.53 0.97 2.07 0.19 0.86 0.55 1.17 0.22 0.47
Average of ratios 1.74 2.19 2.46 3.13 1.36 1.70

10verburdent soil thickness, Model 1 = 2 ft, Model 2 = 0 ft, Mode 3 =1 ft
2See Table 6-1 for FHWA step-by-step procedure

3Bending moment per unit wall length of 1 ft

4Ratio of FHWA estimates to the test result
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Table 6-4: Racking and wall bending moment estimated using FHWA step-by-step procedure (FHWA 2009) as well as the test results
in prototype scale

FHWA? (2009) Test (prototype scale)
== Neo = 42 Neo = 25 Neo = 60
T3 EQ PGA Rackin M t Racki M t3 Racki M t3 Rackin Moment3
gz © _ g omen _ acking omen _ acking omen 9 g omer
o '?(;gt Ratio* | kipfi Ratio? '?(;gt Ratio* | kipfi Ratio? '?(;gt Ratio* | kipft Ratiot | OO (ki)
1 | Norl0OPT1 | 0.60 0.38 0.71 261 1.09 0.52 0.99 361 151 0.30 0.58 212 0.89 0.53 239
2 | Nor200PT1 | 1.06 1.12 1.15 779 1.77 1.52 1.57 1056 241 0.84 0.86 584 1.33 0.98 440
3 | Norl00PTO | 0.90 0.78 0.65 544 1.13 1.15 0.96 798 1.66 0.61 0.50 421 0.87 1.20 483
1 4 | Tak100PT1 | 0.88 0.74 0.52 514 0.89 1.10 0.77 764 1.33 0.58 0.41 406 0.70 1.43 577
5 | Tak100PTO | 0.79 0.61 0.54 420 0.74 0.88 0.78 613 1.08 0.48 0.43 335 0.59 1.13 568
6 | NorlOOPT2 | 0.42 0.22 1.46 151 1.05 0.29 1.93 201 1.39 0.18 1.22 126 0.88 0.15 144
7 | Tak1l00PT2 | 0.75 0.56 0.49 386 0.80 0.79 0.71 551 1.15 0.44 0.39 302 0.63 1.13 480
Average of ratios 0.79 1.07 1.10 1.50 0.63 0.84
1 | Norl00PT2 | 0.64 0.47 17.72 324 4.30 0.63 23.82 434 5.79 0.37 14.24 260 3.46 0.03 75
2 | Norl00PT1 | 0.96 0.99 13.13 689 6.68 1.25 16.48 865 8.38 0.79 10.36 545 5.27 0.08 104
3 | Norl0OPTO | 1.19 1.41 4.39 981 5.35 1.65 5.13 1149 6.25 1.20 3.73 831 4.54 0.32 184
) 4 | Tak100PT2 | 0.90 0.88 2.86 608 3.55 1.13 3.72 788 4.62 0.68 2.22 473 2.76 0.31 171
5 | Nor200PT1 | 1.27 1.55 5.47 1078 6.86 1.79 6.31 1250 7.92 1.33 4.72 927 5.92 0.28 157
6 | Tak1l00PT1 | 0.82 0.73 3.00 507 2.85 0.98 4.05 681 3.84 0.57 2.36 399 2.24 0.24 179
7 | Tak100PTO | 0.92 0.91 4.02 635 3.68 1.17 5.15 813 4.72 0.72 3.14 497 2.88 0.23 173
Average of ratios 7.23 4.75 9.24 5.93 5.83 3.87
1 | Norl0OPT2 | 0.52 0.31 1.71 218 1.38 0.42 2.78 295 2.24 0.26 171 181 1.38 0.15 131
2 | Norl0OPT1 | 0.78 0.62 1.69 433 1.81 0.89 3.02 620 3.24 0.50 1.69 348 1.81 0.30 192
3 | Norl0OPTO | 1.04 1.13 1.23 783 1.89 1.46 2.08 1016 3.19 0.87 1.23 603 1.89 0.70 320
3 4 | Tak100PT2 | 0.80 0.65 0.76 454 1.15 0.94 1.37 653 2.08 0.52 0.76 363 1.15 0.69 315
5 | Nor200PT1 | 1.11 1.27 1.77 883 2.56 1.61 2.87 1117 4.15 0.99 1.77 691 2.56 0.56 270
6 | Tak100PT1 | 0.83 0.70 0.72 483 1.05 1.01 1.31 701 1.92 0.56 0.72 387 1.05 0.77 366
7 | Tak100PTO | 0.80 0.65 0.78 454 1.06 0.94 1.41 653 1.91 0.52 0.78 363 1.06 0.67 343
Average of ratios 1.24 1.56 212 2.67 1.24 1.56

10verburdent soil thickness, Model 1 = 18 ft, Model 2 = 0 ft, Mode 3 = 9 ft

2See Table 6-1 for FHWA step-by-step procedure

3Bending moment per unit wall length of 1 ft
“Ratio of FHWA estimates to the test result
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Figure 6-1: EPRI shear modulus reduction curves (above) and shear stress-strain relationship
along with Gmax of 6760 psi using Neo of 42 (below) for ground in model scale

101



8 1 1 1 1 1 3 T I I 1 T
CRA" —Ng,=25-60 —Ngy =25-60
e 5 ———Mean (N, = 42) | 251 Mean (Ng, = 42) i
é +a (Ngy == 53) £ Ll +a (Ngy = 32) i
5 —
E — — —- [NBD = 32} % — — —-7 [NBD = 53}
5 4 =15+
% 3 2 i
o =
’
& 1 051
I
0 0
0.2 0.4 0.6 0.8 1 1.2 1.4 0.2 0.4 0.6 0.8 1 1.2 1.4
PGA (g) PGA (g)
12 1 1 1 1 1 2-5
. o Ng=25-60
- —ean (N, = 42) 2
L:;, +a (Ngy = 63) o
= — — —0 (Ngy = 32) 2 15
> B =
= g N, =25-60
= e 1 60
& 4 E ——— Mean (N, = 42)
" ) 05k +a (Ngy = 53)
— — —-a (Ng; = 32)
'D 'D 1 1 1
0.2 0.4 0.6 0.8 1 1.2 14 0.2 0.4 0.6 0.8 1 1.2 1.4
PGA (qg) PGA (g)
1.6 1 1 1 1 1 5 T I I 1 T
"Nor100PT1 Ngg =25 - 60 "Nert0OPT1  _ N__=25-60
1.4 P2No00PTH = | *NorzooPT1 &
. ———Mean (N, = 42) sS4l ———Mean (N, = 42)
1 9 k- NortoopTO - Nor100PTO
— | *Tak100PTH +7 (Ngp = 32) S | “raktoopmt *o (Ngg = 32)
& 1 rakioopTo — — —-7 (Ngy = 53) = 3 L Tak100PT0  — — —-7 (Ngy = 53)
2 g |- Nori00PT2 ® Test £ | "Nori0OPT2 @  Test
% | "Tak1o0PT2 S | "TaktooPT2
T 0.6 E2r
= z
0.4 =
&1
0.2 m
0 0
0.2 0.4 0.6 0.8 1 1.2 14 0.2 0.4 0.6 0.8 1 1.2 1.4
PGA (qg) PGA (g)

Figure 6-2: Model 1 with overburden soil depth of 2 ft: variation of FHWA parameters varied
with Ngo from 25 to 60 along with test results (marked in red dots) in model scale
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Figure 6-4: Model 3 with overburden soil depth of 1 ft: variation of FHWA parameters varied
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Figure 6-6: Modified EPRI shear modulus reduction curve for depth from 250 ft to 500 ft (above)
and shear stress-strain relationship along with Gmax of 18.6 ksi using Neo of 42 (below) for ground
in prototype scale

106



[
=]

25 T T T T T 3 1 I I 1 I
—Nm=25—6ﬂ 25l —Nm=25—60
—Mean (Ng, = 42) - ’ —Mean (M, = 42)
+a (Nﬁﬂ = 53) 2k +a (Nm = 32)
e (Nﬁﬂ = 32) [ [Nm = 53)

-
o

Y
=]

Effective shear modulus (ksi)

Shear strain {%)
o

1.4

1
° 05
0 0
0.2 0.4 0.6 0.8 1 1.2 1.4 0.2 0.4 0.6 0.8 1 1.2
PGA (g) PGA (g)
12 T T T T T 2.5
————Ng, =25-60
. 10r ———Mean (Ng, = 42) 2
”t;. 8 to(Ngy =53 | &
= — — —wo (Ngy = 32) 2 15
z 6 o ‘
3 S qF —Ng=25-60
s 4 E —— Mean (N, = 42)
b 05k +7 (Ngy = 53) Ng =25 |
2 — — =0 (Ngy = 32)
0 0 1 1 1 1 L
0.2 0.4 0.6 0.8 1 1.2 1.4 0.2 0.4 0.6 0.8 1 1.2
PGA (g) PGA (g)
3 T T T T T 2500 1 I I 1
"Nor100PT1 ——— Ng, =25-60 "Nort00PT1  — MNgp =25-60
2.5 | “Nor200PT1  ——_Mean (N, =~ 42) = NOr200PT1 e Mean (N, = 42)
“Nor100PTO o (N = 32) < 2000 FangrgopTo +o (N ~ 32)
— | 'TakiooPT1 &0 | = “Tak100PT1 wa e
5__“_" STak1i00PTO — -7 (Nﬁﬂ =~ 53) = 1500 STakiooPTO - &0 )
=
D, o | NortooeT2 @ Test {2 NortoopT2 @ Test
x Tak100PT2 S "Tak100PT2
[ E 1000 .
o1 1@
£ 500 1
0.5 18
0 L L L L L D 1 | | 1 L
0.2 0.4 0.6 0.8 1 1.2 1.4 0.2 0.4 0.6 0.8 1 1.2 14
PGA (g) PGA (g)

Figure 6-7: Model 1 with overburden soil depth of 18 ft: variation of FHWA parameters varied
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Figure 6-9: Model 3 with overburden soil depth of 1 ft: variation of FHWA parameters varied

with Neo from 25 to 60 along with test results (marked in red dots) in prototype scale
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7. Concluding Remarks

7.1. Summary of Shake Table Test Results

From the shake table tests for three test models under different backfill conditions and
thickness of overburden soil (associated with burial depth), peak dynamic response was
summarized in the 1/9 scale model and the actual full-scale dimensions. At peak lateral
deformation (racking), lateral earth pressure measured from the pressure sensors was presented
and discussed. Particularly, the earth pressure was expressed in terms of resultant force and point
of action associated with the tunnel deformation.

Main findings from the overall testing results are as follows:

1. Peak racking occurred generally in the neighborhood of PGA and PGV in each test model.

2. Under the same earthquake excitation for the different test models, PGA slightly decreased
with increasing thickness of overburden soil. In spite of the lower PGA, peak racking
noticeably increased with increasing thickness of overburden soil.

- This trend was associated with a low level of the strain softening.
- This softening affected the relative stiffness between the tunnel and the surrounding soil:

As the softening increased, the extent of the relative stiffness of the tunnel to the soil

increased. Consequently, the tunnel suffered less deformation relative to the soil as shown

in the test model without overburden soil.

3. Peak racking was caused by the relative difference between resultant forces and associated
point of action on both sides of the tunnel. For instance, generally at peak racking eastwards,
the following mechanisms were involved:

1) For 9ft overburden soil in prototype scale (1 ft overburden in mode scale) compacted at
about 85% relative density
e The resultant force and point of action on the West wall were high, and
e The resultant force and point of action on the East wall were low,
e Reduction of the resultant force on the East wall was a main reason for the observed peak
racking (rather than the increase of the resultant force on the West wall).
2) For 18 ft overburden soil in prototype scale (2 ft overburden in model scale) compacted at
about 99% relative density

e The resultant force on the West wall was low but associated point of action was high, and
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e The resultant force on the East wall was high but associated point of action was low,
e Upward and downward shift of the resultant forces on the West and the East wall,
respectively, was a main reason for the observed peak racking (rather than the increase of

the resultant force on the West wall)

In addition to the above overall summaries, the following observations were drawn from

the individual testing scenarios:

1.

Model configuration without overburden soil (D of 85%):

e Despite large soil deformation associated with PGAs of up to about 1.5g and shear strain
of about 2%, resulting peak racking was less than 0.15% in terms of drift.

Model configuration with 9 ft (1 ft in model scale) overburden soil (D of 85%):

e For PGAs of 0.8 g and higher, the dynamic excitation can more than double the moments
experienced by the wall due to the post-construction static state of stress.

Model configuration with 18 ft (2 ft in model scale) overburden soil (Dr of 99%):

e Due to the post-construction static state of stress associated with relative density of 99%,
resultant forces and additional increments of wall bending moments associated with peak

racking were likely to be lower than the static values, even for PGAs of up to about 1g.

7.2. Summary of Comparison Study to FHWA Step-by-step Procedure

Racking and wall bending moment were computed using the FHWA procedure and

compared to the test results in model and prototype scale. From this study, the following

observation could be drawn and may be considered in improving the current simplified procedure.

As the earthquake intensity increased (PGA higher than about 0.6g), the FHWA procedure
tended to be relatively sensitive to the backfill material properties for soils with high relative
compaction of about 95 percent. This sensitivity resulted from wide variation of shear strain in
the surrounding soil between the top and bottom elevation of the tunnel. As such, the FHWA
procedure must be applied with caution for relatively strong earthquake scenarios.

For the relatively deep tunnel in this study (18 ft overburden soil above top face of the tunnel),
the FHWA procedure predicted to some extent adequate degree of racking compared to the test

result.
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e For the relatively shallow tunnel (in the case without overburden soil), conservatism of the
FHWA was noticeable in comparison to the test results.

¢ Inthe FHWA procedure, wall bending moment was essentially dictated by the resulting racking
based on a linear-elastic frame model. As the pseudo-static lateral distribution (inverted
triangular shape) was used in computing the seismic demand in terms of bending moment, more
conservatism was noted. From the test, it was found that there was a considerable reduction of
the lateral earth pressure (dynamic component) near the tunnel base in the shape of the
asymmetric distribution on both sides of the tunnel. As such, a more realistic loading
mechanism representative of asymmetric resultant force and point of action on both sides of the
tunnel may be considered in updates of simplified analysis procedures. For this purpose, further
analysis is needed to quantify seismic loading distribution under various conditions of the

backfill material, burial depth, earthquake characteristics, and so forth.
7.3. Tunnels with a wall-roof hinge connection

Using a Finite Element model calibrated by the test results, a preliminary numerical
investigation was conducted to assess the influence of a potential hinge connection between the
tunnel walls and the roof. In general, the numerical response matched well with the recorded
response during the Nor100PT1 input excitation. To evaluate seismic capacity of the tunnel with
respect to change in the tunnel stiffness, wall-roof hinge connections were prescribed on both sides
of the tunnel. Using this modified tunnel model, the numerical results showed that the reduced
tunnel stiffness increased the displacement demand by as much as 75%. However, no significant
change in the wall peak bending moment or shear force were noted. Racking deformation for the
pinned connection scenario can thus be potentially estimated by the FHWA (2009) procedure,
employing the corresponding reduced tunnel racking stiffness.
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Appendix A Test Model Construction

This appendix presents photographs taken from the test model construction.

Figure A—2: Laminar soil container base on shake table

115



Figure A—4: Plastic lining inside the laminar soil container (the wood was removed during backfill)
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Figure A-6: Transportation of soil
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Figure A-7: Backfilling

Figure A-8: Backfill compaction
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Figure A-10: Placement of accelerometer during backfilling
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Figure A-11: Transportation of tunnel
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Figure A-12: Backfilling
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Appendix B Instrumentation Plan

This appendix presents the detailed instrumentation layout.

Accelerometers (A)

Strain gauges (S) / Inclinometers (Inc) /
Linear potentiometers (LP) /

Tactilus pressure sensors (TP)

West

String potentiometers (SP)

1=

1=

Accelerometers (A)

Schematic of instrumentation layout (elevation view)

TEST 1 CONFIGURATION

TUNNEL SHAKE TABLE TEST

DATE

GENERAL PLAN

Figure B—1: General plan of the instrumentation
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Figure B-2: Elevation view of accelerometer (A) instrumentation plan for Test Model 1
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Figure B-3: Plan view of accelerometer (A) instrumentation layout
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Figure B—4: Elevation view of string potentiometer (SP) layout to measure lateral displacement of the laminar frames
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Figure B-5: Elevation view of string potentiometer (SP) layout to measure translation of the tunnel relative to the laminar frames
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Figure B—6: Plan view of string potentiometer (SP) layout to measure translation of the tunnel relative to the laminar frames
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Figure B—7: Linear potentiometer (LP) layout to measure lateral deformation of tunnel
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Figure B-8: Strain gauge (S) layout to measure bending strain along the tunnel walls and the base
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Appendix C Shake Table Test Response Time Histories in Model Scale

This appendix presents time histories of the main response recorded from the shake table
tests in model scale, as discussed earlier in Section 3.3. Model 1 recorded response time histories
in the order of the shaking sequence (see Section 2.4.3 for the loading protocol) are shown in
Figure C-1 through Figure C-7. Model 2 recorded response is shown in Figure C-8 through Figure
C-14. Model 3 response is shown in Figure C-15 through C-21.

The time histories of the lateral earth pressure along the walls as shown earlier in Section
4.2 are presented in Figure C-22 through Figure C-26 from Model 1 and in Figure C-28 through
FigureC-32 from Model 3.
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Figure C-8: Model 2 response time histories during Nor100PT2 input excitation in model scale
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Figure C-9: Model 2 response time histories during Nor100PT1 input excitation in model scale
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Figure C-10: Model 2 response time histories during Nor100PTO input excitation in model scale
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Figure C-11: Model 2 response time histories during Tak100PT2 input excitation in model scale
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Figure C-12: Model 2 response time histories during Nor200PT1 input excitation in model scale
(without overburden soil)
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Figure C-13: Model 2 response time histories during Tak100PT1 input excitation in model scale
(without overburden soil)
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Figure C—14: Model 2 response time histories during Tak100PTO input excitation in model scale
(without overburden soil)
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Figure C-15: Model 3 response time histories during Nor100PT2 input excitation in model scale
(1 ft overburden soil)
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Figure C-16: Model 3 response time histories during Nor100PT1 input excitation in model scale
(1 ft overburden soil)
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Figure C-18: Model 3 response time histories during Tak100PT2 input excitation in model scale
(1 ft overburden soil)
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Figure C-19: Model 3 response time histories during Nor200PT1 input excitation in model scale

(1 ft overburden soil)
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Figure C-20: Model 3 response time histories during Tak100PT1 input excitation in model scale
(1 ft overburden soil)
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Figure C-21: Model 3 response time histories during Tak100PTO input excitation in model scale
(1 ft overburden soil)
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Figure C—22: Model 1 earth pressure time histories along the wall height during Nor100PT1 input
excitation (2 ft overburden soil)
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Figure C-23: Model 1 earth pressure time histories along the wall height during Nor200PT1 input
excitation (2 ft overburden soil)
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Figure C-24: Model 1 earth pressure time histories along the wall height during Nor100PTO input
excitation (2 ft overburden soil)
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Figure C-25: Model 1 earth pressure time histories along the wall height during Tak100PT1 input
excitation (2 ft overburden soil)
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Figure C-26: Model 1 earth pressure time histories along the wall height during Tak100PTO input
excitation (2 ft overburden soil)
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Figure C-27: Model 3 earth pressure time histories along the wall height during Nor100PT2 input
excitation (1 ft overburden soil)
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Figure C-28: Model 3 earth pressure time histories along the wall height during Nor100PT1 input
excitation (1 ft overburden soil)
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Figure C—29: Model 3 earth pressure time histories along the wall height during Nor100PTO input
excitation (1 ft overburden soil)
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Figure C—-30: Model 3 earth pressure time histories along the wall height during Tak100PT2 input
excitation (1 ft overburden soil)
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Figure C—-31: Model 3 earth pressure time histories along the wall height during Nor200PT1 input
excitation (1 ft overburden soil)
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Figure C—-32: Model 3 earth pressure time histories along the wall height during Tak100PT1 input
excitation (1 ft overburden soil)
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Appendix D Scaling Law

For 1g model tests in soil-structure systems, scaling relationships between a model
(similitude) and the corresponding prototype are discussed. Since soil is a stress-dependent
material, its stress-strain behavior should be appropriately presented by the model as illustrated in
Figure D-1. Fundamental laws of mechanics such as equilibrium and mass balance of soil skeleton
(dry soil) also need to be satisfied in the similitude through the scaling factors. From governing

equations for these principles, the following relations are derived by lai (1989):

Ag/A = Ay = A,A, /A% (from equilibrium) (D-1)
Ae = Ay, /A (from strain definition) (D-2)
As = ApA¢ (from constitutive law) (D-3)

where A = geometrical scaling factor (prototype/model)

As = stress scaling factor (prototype/model)

Ac = strain scaling factor (prototype/model)

Ap = modulus of soil scaling factor (prototype/model)

A, = density scaling factor (prototype/model)

A = displacement scaling factor (prototype/model)

At = time scaling factor (prototype/model)

Iai (1989) derived the strain scaling factor (A¢) from shear wave velocity tests in the model

and prototype such as:

Vom]?
A, =2 —(Vs)p] (D-4)

where (Vs)m and (Vs)p denote shear wave velocities of soil deposits in the model and prototype,
respectively. If the preliminary data for stress-dependent behavior of soil in the model are not

available, it is assumed that the shear modulus at small strain of 10 is proportional to the square

roof of the confining pressures. Consequently, this assumption leads to the following relation:

Ae = A0S (D-5)
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In practice, as the density of the soil in the model is the same as that in the prototype, the density
scaling factor is unity (A, = 1). Table D-1 summarizes the main scaling factors derived by lai
(1989). The scaling factors for structures as a beam (e.g. a sheet pile) are also shown in Table D-
1. For such a structure in two dimensions (2D), its dimensions and cross-sections are generally
specified per unit length (i.e. an axis out-of plane in Figure D-1). Thus, the scaling factors shown

in Table E-1 are specified per unit length.

Table D-1: Main scaling factors for 1g model tests (lai 1989)

Scaling factor (prototype to 1/9 scale)

Quantity Generalized Ao =205, hp=1 CASE of .= 9
scaling factors

Length A A 9
Density Ao 1 1
Time (Mhe)%® 2078 5.2
Acceleration 1 1 1
Velocity (Mhe)?® 207 5.2
Displacement M ALS 27
Stress M A 9
Strain e A0S 3
Stiffness Mo/ A0S 3
El* Ao/ he A3S 2187
EA* A2hp/ e AL® 27
Moment* Ao 5 729
Shear* A2\ A2 81
Axial Force* A2\ A2 81

*specified per unit breadth of the tunnel along its longitudinal axis (based on 2D Plane Strain)
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Appendix E Shake Table Test Response Time Histories in Prototype Scale

This appendix presents time histories of the main response recorded from the shake table
tests in prototype scale, as discussed earlier in Chapter 5. The recorded response time histories
from Model 1 by order of the shaking sequence (see Section 2.4.3 for the loading protocol) are
shown in Figure E-1 through Figure E-5. The similar plots from Model 2 are shown in Figure E-6
through Figure E-10. The similar plots from Model 3 are shown in Figure E-11 through E-15.

The time histories of the lateral earth pressure along the walls as shown earlier in Section
4.2 are presented in Figure E-16 through Figure E-19 from Model 3 and in Figure E-20 and Figure
E-21 from Model 3.
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Figure E-11: Model 3 response time histories during Norl0OPT1 input excitation in prototype
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Figure E-13: Model 3 response time histories during Nor200PT1 input excitation in prototype
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Figure E-14: Model 3 response time histories during Norl0OOPT1 input excitation in prototype
scale (9 ft overburden soil)
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Figure E-15: Model 3 response time histories during Tak100PTO input excitation in prototype
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Figure E-16: Model 3 earth pressure time histories along the wall height during Nor100PT2 input
excitation in prototype scale (9 ft overburden soil)
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Figure E-17: Model 3 earth pressure time histories along the wall height during Nor100PT1 input

excitation in prototype scale (9 ft overburden soil)
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Figure E-18: Model 3 earth pressure time histories along the wall height during Tak100PT2 input
excitation in prototype scale (9 ft overburden soil)
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Figure E-19: Model 3 earth pressure time histories along the wall height during Nor200PT1 input
excitation in prototype scale (9 ft overburden soil)

189



‘ Vertical stress (s, = yH) from pressure sensor

= 100 Wes{wall at height = 276 ft | = 10° East |vall at height = 27.9 ft
& 8oy 1 8 807 1
g 601 Peak racki;gtoward East g 60| Peak racking toward West
=3 > g
w 40" 1 @ 4071 \
7] (72} \
© 20 \W\H"W © 20}
LY P . DU P 0"“__‘“"7‘""“'34»-—‘
~ Peak racking toward West Peak racking toward East
= 100 Wes{wall atheight=236% | = °°[ "~ ~ " " | ' East|val at height= 236 f
8 sof 1 & sor ]
o o 60
(7] 72}
o L 20
o o
e ol

= 100 Wes{wall at height = 193 ft | = 10° East |vall at height = 19.3 ft
8 &0 1 & 80| ]
o 60 1 © 605
@ 40 \N,MWVVWWW‘ 3 401
(7] 72}
S 20 | £ 200
o o

0 R
=100 Wes{wall atheight =150 | = "0[ | " East|uall atheight = 150t
o 80 r 18 80 i
o 60 1 © 60f
B 40| MW ? 40%
7] V"W »
® 20 1@ 201
o o

ot I
= 100 Wesfwall at height = 10.7 ft | = 100
& 80 r 1 & 80
o 60 ® 60F
§ 40———-v\[v,w\ : § 40t
o 20 VWM A~ 8 g
o o

o———t——— R
%\100 Wes{wall at height = 6.4 ft %\100 N East |vall at height = 6.4 ft
3 80 1 & 80
o 60 © 60
? 4°M""JV\/\HW\ ;] @ 401
[7/] n
2 ol !\N\/\l\r\f\ﬂ‘/\wz\/x/www 2 ol
o o

o——t——— 0
= 100 Wes{wall at height =2.1ft | = 100 East |vall at height = 2.1 ft
\Q_/ 80 1 & 80
o 60 © 60
@ 40 @ 40
7] n
o 20 © 20
n- 0 L L L L i L L L L L L L L L n- 0 L L L L i L L L L L L L L L

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Time (sec) Time (sec)

Figure E-20: Model 1 earth pressure time histories along the wall height during Nor100PT1 input
excitation in prototype scale (18 ft overburden soil)
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Figure E-21: Model 1 earth pressure time histories along the wall height during Nor200PT1 input
excitation in prototype scale (18 ft overburden soil)
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Appendix F Numerical Analysis: Pinned Connection Between Tunnel Roof
and Side Walls

In this section, two-dimensional (2D) plane-strain finite element (FE) analyses were
conducted to model the 1% test configuration (Model 1 with 2 ft overburden soil in model scale).
First, the FE simulation in model scale was calibrated using the test records measured during the
Norl00PTO input excitation. Upon completion of this calibration phase, the employed geometric
and material properties were scaled up to simulate the full-scale model using the scaling
relationships presented by lai (1989). The full-scale numerical model response was compared to
the test results which were also interpreted in full-scale. Finally, the full-scale FE model was
employed to further study the influence of possible hinge connection at the interface between wall

and roof on both sides of the tunnel.
F.1 FE Model Configuration in Test Scale

System modeling was performed in the 2D plane strain configuration using the OpenSees
platform (Mazzoni et al. 2009). Figure F-1 shows the 2D FE mesh representing the shake table test
model.

F.1.1 Soil element and material properties

Four-node quadrilateral elements were used to model the backfill soil (Figure F-1a). The
PressureDependMultiYield (PDMY) model (Yang et al. 2003) was used to represent the soil
material in Model 1 compacted at D, of 99% (Table F-1). Reference shear modulus (Gy) of 2623
psi at depth of 6 ft was selected to match Gmax (0n average) which was evaluated from the recorded
acceleration in the shake table test (average from ground surface to the model base).

F.1.2 Tunnel element and material properties

As shown in Figure F-1Db, the tunnel model was composed of two different OpenSees
element types:
1) Elastic beam-column element (see Table F-2 for the material properties)
This element was used to only model the tunnel wall part. Mass of the wall was distributed
along the elements. During the entire FE simulation phases (static and shaking), the resulting
wall response was dictated by these elements.

2) Quadrilateral elements (see Table F-3 for the material properties)
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The quadrilateral element was used to model the geometric configuration for the roof and slab.
The corresponding equivalent unit weight (mass density) was defined as the actual weight of
the components divided by the corresponding occupied space. As designed, essentially rigid
material properties were used for the roof and slab elements throughout.

F.1.3 Boundary conditions

At the interface between the soil and the tunnel walls, Elastic No-Tension (ENT) uniaxial
material was employed to allow possible gap opening during shaking in the normal (lateral)
direction to the wall (Figure F-2). The corresponding structure and soil nodes were connected
using OpenSees zero-Length elements. In the vertical direction, free settlement was allowed (no
friction) due to differential settlement of the soil and the structure (noting that the structure was
relatively light). Along the wall base, the structure nodes were tied to the soil nodes to enforce
identical translation in the horizontal and vertical directions (no separation/friction using
equalDOF). Along both sides of the soil mesh, lateral and vertical translations were constrained to
be identical (i.e., shear beam response assumption).

Computational procedure

Prior to seismic excitation, gravity induced own-weight was applied. Based on the
confinement at any depth, the soil constitutive parameters were systematically defined (Table F-
1). The Nor100PT1 input motion measured from the shake table was used as input. This motion
was applied to the model base as uniform excitation. Dynamic response of this FE model was
computed using the TRBDF2 integrator, a combination of the trapezoidal and 3 point backward
Euler schemes (Bathe 2007). This integrator attempts to conserve energy and momentum in the
model. The analysis was conducted with a step size of 0.005 sec. Rayleigh damping was employed.
For that purpose, the mass and stiffness proportional terms were defined to provide viscous
damping of about 5% for the first few modes of the model (in the range of 9.22 Hz — 17.25 Hz).

F.2 FE Analysis Results Compared to Test Records

The computed FE response time histories of Model 1 were compared to the test results in
terms of:
1) Acceleration at 7 locations along the depth compared to the records from the West side
(Figure F-3) and the East side (Figure F-4)
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2) Soil lateral boundary displacement along the depth (i.e., lateral displacement of the laminar
soil container) compared to the records measured from string potentiometers (Figure F-5)
3) Racking (Figure F-6)
4) Wall bending moment on both sides of the tunnel (Figure F-7)
As shown in the above figures, the numerical response of soil and wall bending moment generally
provided a reasonable match to the recorded response. The numerical racking result showed a good

agreement in terms of the peak value rather than overall in-phase response.
F.3 FE Model Configuration in Full-Scale

The geometric configuration of the full-scale FE model was scaled by a factor of 9 (the
nodal coordinates of the FE mesh were simply scaled up). Table F-4 summarizes the soil material
properties in the full-scale FE model using the scaling relationships by lai (1989). Similarly, the
tunnel material properties were determined by applying the scaling factor as summarized inTable
F-5. As in model scale, the quadrilateral elements representing of the tunnel roof and base in model
scale were essentially in full-scale as well (Table F-3). The mass of the model changed according
to the scaled nodal coordinates. Boundary conditions and the ENT material properties at the
interface between the soil and the tunnel wall remained identical.

The time duration of the Nor100PT1 input motion was scaled by a factor of 5.2 (= 9°7)
and applied to the full-scale model base. Rayleigh damping of 5% was employed for the updated
first few modes of the model in the range of 1.78 Hz — 3.32 Hz which were the outcomes from the
full-scale numerical model eigenvalue analysis (scaled values according to the scale factor for
frequency). The computational procedure was identical to that employed earlier as presented above
in Section 1.2.4,

F.3.1 FE analysis results compared to test results

As presented earlier in Section F.3, the computed FE response time histories of the full-
scale Model 1 were compared to the corresponding test results in terms of:
1) Acceleration at 7 locations along the depth compared to the records from the West side
(Figure F-8) and the East side (Figure F-9)
2) Soil lateral boundary displacement along the depth compared to the records measured from
string potentiometers (Figure F-10)
3) Racking (Figure F-11)
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4) Wall bending moment on both sides of the tunnel (Figure F-12)
As observed in the model scale, the full-scale numerical response matches well with the recorded

response.
F.4 Inclusion of Pinned Connection in Full-Scale FE Model

As shown in Figure F-13, two pinned connections (hinges) at the interface between the
wall top and the roof were defined in the OpenSees tunnel model (full-scale). This modification
essentially reduced the racking stiffness by as much as four times, compared to the employed
fixed-fixed wall-roof and wall-base configuration scenario of the experimental phase. In this
regard, the tunnel with the pinned connections is now represented by the earlier OpenSees FE
model (presented in Section F.3). All other numerical considerations such as the soil material

properties, boundary conditions, input motions, and so forth remained identical.
F.4.1 Comparison of FE analysis results with fixed and with hinge conditions

Figure F-14 and Figure F-15 show a comparison of soil acceleration (on the West side) and
soil displacement along the lateral boundary of the FE mesh. As shown in these plots, the soil
response was quite similar, regardless of the tunnel stiffness. As such, the selected nodal locations
for this comparison represent a free-field condition (e.g., acceleration at 36 ft away and
displacement at 72 ft away from the wall). Similarly, the soil displacement (distortion) at the level
of the tunnel roof relative to the base (72 ft away from the wall) was quite similar (Figure F-16a).

Despite this similar soil response, the tunnel racking was significantly affected by the
reduction in its lateral stiffness (Figure F-16b). Racking (about 3.3 in) for the pinned connections
was higher by as much as 75% compared to the earlier fixed-fixed case (about 1.9 in), as
summarized in Table F-6. Associated with the pinned connections, the resulting bending moment
was essentially zero near the tunnel roof (Figure F-17). However, bending moment at the wall base
was close to that of the earlier fixed-fixed case (Figure F-17).

For a given deflection (o) at one end of a bending beam under two different boundary
conditions: 1) fixed-fixed end (without the hinges) and 2) fixed-free end (with the hinges), the
resulting bending moment (M) can be analytically computed as: 1) Mixed-fixed = 6EIS/h? and 2)
Miixed-free = 3EI5/N? where El and h are flexural rigidity and length of the beam, respectively. In

our study, racking for the pinned connection (Jpinned), Which was about 75% larger than that in the
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other case (Jfixed-fixed = 1/1.75 Spinned = 0.57Spinned), resulted in the bending moment of 3E/Spinnea/h?,
compared to 6E1(0.576pinned)/h?= 3.4EIpinnea/n? with fixed connection (i.e., about 10% reduction).

Figure F-18 shows shear force time histories along the walls with fixed and with hinge
connections. As observed above for bending moment (Figure F-17), shear force at the base was
quite similar. The pinned connection resulted in lower shear force near the roof, about 30% of the
fixed-fixed model case. In this regard, the additional hinge-induced flexibility mainly affected the
displacement demand rather than the internal forces in the tunnel walls.

At peak racking, the resulting soil shear modulus from the fixed-fixed model (from soil
elements next to the lateral boundary along the depth) is presented in Figure F-19a. The average
soil shear modulus was about 3160 psi. Furthermore, the resulting shear strain was generally
constant in the 16 soil layers along the depth from the tunnel roof to the base (about 0.6% as shown
in Figure F-19D).

As discussed earlier in Section 6, tunnel racking can be estimated using the FHWA step-
by-step procedure (Table 6-1). In this procedure, racking ratio (Ry) is determined by the flexibility
ratio (Fr). Racking can then be computed by R, multiplied by free-field soil distortion (along the
tunnel height). As such, Fr and Rr were evaluated from the soil shear modulus (Figure F-19a) and
racking stiffness (Figure F-13) as summarized in Table F-7. Without aid of the FHWA procedure,
Rr can be directly obtained from the numerical results as shown in Table F-6. It is noted that, as
discussed earlier in Section 6, the FHWA estimate is relatively higher that the test results. However,
in this section, focus is on quantifying the change in Fr and Rr depending on racking stiffness with
the fixed and the hinge connections.

As summarized in Table F-6, the pinned connection induced a higher Ry by as much as
53%, compared to the original fixed-fixed tunnel configuration (observed from the OpenSees FE
analysis). This higher Rr consequently resulted in larger tunnel racking deformation without
significant change in the wall bending moment as well as the soil response. Similarly, R estimated
using Fr as presented in FHWA (2009), became about 50% higher than that with the fixed
connection (Table F-7). As such, the above observation illustrates that tunnel racking with respect
to soil deformation (i.e., Rr) can be determined by the relative stiffness between the tunnel and the

surrounding soil (i.e., Fy).
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F.5 Summary

Using a Finite Element model calibrated by the test results, a preliminary numerical
investigation was conducted to assess the influence of a potential hinge connection between the
tunnel walls and the roof. In general, the numerical response matched well with the recorded
response during the Nor100PT1 input excitation. To evaluate seismic capacity of the tunnel with
respect to change in the tunnel stiffness, wall-roof hinge connections were prescribed on both sides
of the tunnel. Using this modified tunnel model, the numerical results showed that the reduced
tunnel stiffness increased the displacement demand by as much as 75%. However, no significant
change in the wall peak bending moment or shear force were noted. Racking deformation for the
pinned connection scenario can thus be potentially estimated by the FHWA (2009) procedure,

employing the corresponding reduced tunnel racking stiffness.
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Table F-1: OpenSees soil material properties (PressureDependMultiYield) for Model 1 in model
scale

Model parameter Parameter value
Below tunnel base Above tunnel base

Unit weight (pcf) 120
Reference shear modulus, Gr (psi) 2623
Reference shear wave velocity (ft/s) 318
Poisson’s ratio 04
Reference bulk modulus, By (psi) 12,241
Reference confining stress, p r (psi) 4.3
Peak shear strain 0.03
Friction angle (degrees) 41 46

Table F-2: OpenSees beam-column element material properties of tunnel wall (based on 1 in

plane strain FE model thickness)

Unit weight (y) 490 pcf
Young’s modulus (E) 25,164 ksi
Moment of inertia (1) 0.0352 in*
Sectional area (A) 0.75 in?

Table F-3: OpenSees quadrilateral element material properties of tunnel structure

Part Slab Roof (HSS sections) Wood
Unit weight (y) 160 pcf 39 pcf 6 pcf
Young’s modulus (E) Essentially rigid for the entire analysis phases (static and shaking)

Poisson’s ratio (v) 0.3
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Table F-4: OpenSees soil material properties (PressureDependMultiYield) for Model 1in

prototype scale

Model parameter

Parameter value

Below tunnel base Above tunnel base

Unit weight (pcf)

120

Reference shear modulus, Gr (psi)

7,869 (scaled by a factor of 9°° = 3)

Reference shear wave velocity (ft/s)

551 (scaled by a factor of 9%2° = 1.73)

Poisson’s ratio

0.4

Reference bulk modulus, Br (psi)

36,723 (scaled by a factor of 9°° = 3)

Reference confining stress, P r (psi)

38.7 (scaled by a factor of 9)

Peak shear strain

0.09 (scaled by a factor of 9%° = 3)

Friction angle (degrees)

41 46

Table F-5: OpenSees beam-column element material properties of tunnel wall per unit length of 1

inch in prototype scale

Unit weight (y)

490 pcf

Young’s modulus (E)

75,492 ksi (scaled by a factor of 9%° = 3)

Moment of inertia (1)

25.66 in* (scaled by a factor of 93 = 729)

Sectional area (A)

6.75 in? (scaled by a factor of 9)
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Table F-6: OpenSees FE analysis results with fixed and with hinge boundary condition

Original model configuration

Modified model configuration

Parameter (fixed condition) (with hinges)
Soil distortion (in) 1.96 2.17
Racking (in) 1.92 3.25
Racking ratio, Rr 0.98 1.50

Table F-7: Comparison of flexibility and racking ratios resulting from OpenSees FE analyses with

fixed and with hinge boundary condition

With hinges
Parameter Fixed condition | G, from original | G from modified
model config. model config.
Effective shear modulus, G (psi) 3,155 3,155 3,028
Racking stiffness, Ks (psi) 2,995 767 767
Flexibility ratio, Fr (FHWA 2009) 1.88 7.35 7.06
Racking ratio, R, (FHWA 2009) 1.42 2.04 2.03
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Figure F-13: Deformed configuration of OpenSees tunnel model subjected to unit displacement at
the wall top with fixed and with hinge boundary condition
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Figure F-15: OpenSees soil displacement along depth (side boundary) relative to the base from
Model 1 Nor100PT1 with fixed and with hinge boundary condition in prototype scale
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racking (b) from Model 1 Nor100PT1 with fixed and with hinge boundary condition in prototype
scale
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Figure F—18: OpenSees wall shear force time histories (per unit wall length of 1 ft) from Model 1
Nor100PT1 with fixed and with hinge boundary conditions in prototype scale
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Appendix G : Summary of Reinforced Concrete Tunnel Test

This appendix presents a summary of the 1/3 scale reinforced concrete tunnel test under
quasi-static cyclic loading. Full description of the test results were reported in the previous Caltrans
report (Kim et al. 2015).

Figure F-1b shows the test model that was idealized from the Doyle Drive battery tunnel
(see Figure F-1a for the typical cross section). The photograph and drawing of the test setup are
shown in Figure F-2 and Figure F-3, respectively. Under the control of the lateral displacement at
the top of the tunnel (Figure F-4), the relationship of the lateral force and displacement in model
scale is shown in Figure F-5. This test result was interpreted in the full scale (Figure F-6).

A numerical effort was made to simulate the lateral force-displacement behavior of the 1/3
scale RC tunnel using the OpenSees platform (Figure F-7 and Figure F-8). On this basis, the actual
scale model was built and the moment-curvature response of the wall section in the full scale is

shown in Figure F-9.
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Figure G—2: Photograph of the test setup
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